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ABSTRACT:

The kinematic aspect of surveillance- vasion is studied with a
deterministic differential game model. The model considers a Pursuer
with limitations on both speed and maneuverabiliLy (turnin2 radius)
and an Evader with only a speed limitation. Conditions are developed
for the Pursuer to be able to maintain contact indeflnitely. The
results of this research modify previously published results on this
problem. Shortcomings of previous work aro discussed including the
fact that the surveillance-evasion problem has not been solved for an

arbitrary detection region. Related parts of the solution to Isaacs'
homicidal chauffeur game and its one-sided counterpart are developed

as background material. Some known allocation of effort in search
-.theory results are derived by the Pontryagin maximum principle.
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I. lntroduction

This report documents research findings for the time period 30

March 1970 to 19 June 1970 under support of NR 276-027. This report

discusses applications of the theory of differential games to pursuit

and evasion problems of Naval warfare. In particular, we consider

the problem of surveillance-evasion. A companion report [47] discusses

other research findings of the contract period with respect to tactical.,

allocation problems.

The goal of this research is to determine the circumstances, [

under which an evader can outmaneuver a pursuer to escape as a function

.of maneuverability. The solution of this problem leads to conditions

' -or a tracker (destroyer) to be able to keep a hostile vehicle (sub- t
marine) under constant surveillance. The original approach was to

-... - - urvey the previously published work in this field and to attempt to

extend these modelling efforts. Detailed analysis of past work [14]

has uncovered several flaws in its mathematical development, and,

hence, the current work has concentrated on establishing a firmer

* -nathematical basis for the surveillance-evasion aspect of the more i

general problem of pursuit and evasion. This work has created a broad

base for future possible extensions.

Warfare is characterized by decisions being made on the dynamics

of combat over a period of time by the antagonists towards conflicting i
goals. The creation of game theory by J. von Neumann [48], [49]

(although anticipated by E. Borel [21]) has had a major impact on the

modelling of conflict situations. The optimization of dynamical systems

?i
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has been studied under the calculus of variations since the 17th

century. However, in cases where inequality constraints are present

in the model, these powerful classical techniques require intricate

modifications. In this environment, the almost simultaneous develop-

ment iu the early 1950's of differential games by R. Isaacs [26], [27],

[28], [29] and the Pontryagin maximum principle by the Russian mathe-

matician L. Pontryagin [43] has been enthusiastically received by I

--,military operations research workers. It seems appropriate to discuss
I

-these techniques briefly.

a. Differential Games

R. Isaacs was the original developer of differential games in

. : the environment of RAND in the early 1950's [26], (27], [28], [29]. 1
Although not acknowledged in his book, he applied Bellman's ideas of

,ynam ic programming [5] to a limiting case of a multi-move discrete

game. A brief sketch of the history of the later mathematical develop-- .. .,, - , / - -: . :. . .. .. ... .1.' !

ment of differential games up through 1965 is contained in [22]. Isaacs

published a major work in 1965 [30]. Y. C. Ho [23] has reviewed Isaacs's

-ork and discussed its relationship to deterministic optimal control theory

in an excellent review of the book Differential Games.

The subject referred to as differential games may in the future

be called zero-sum deterministic differential games within the emerging

framework of "generalized control theory" (24]. [25]. It seems appro-

priate therefore to review briefly the characteristics of such

optimization models. We consider two-controllers who manipulate their

own control variables in a dynamic system whose behavior is described

by a system of differential equations. Each controller has his own
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criterion function, but these are related by summing to a constant.

-Hence, one man's loss is the other's gain. There is one information

set and it is perfect in the sense that all past history is known,

opponent's capability, tc., ecex t the instantaneous strategy of the

opponent. It is within the framework of these general assumptions

"that idealized surveillance-evasion tactics will be developed.

The work of Isaacs has been the major source of ideas for the

current research. Although recent work has been more mathematically

precise [6], (7], the worked examples in Isaacs book appear to this

researcher to be at least a decade ahead of the development of those

who place a premium on precision. Each new application of differential

. game theory appears to motivate several new concepts.

b. Generalized Control Theory

_____ .. " It seems appropriate to discuss the general problem of pursuit

and evasion within the broader framework of "generalized control theory."

As noted above, two notable deficiencies of the differential game models

to be considered in this work are: (1) perfect information is assumed

and (2) the model is deterministic. Hence, we will address only the

kinematic aspects of survei'lance-evasion and will not consider deception

tactics.

Within the past severf.l years a probabilistic control theory

has emerged. W. Fleming [19J recently has reviewed this field and

provided an extensive (and b isic) bibliography. Willman [50] and Behn

and Ho (4] have extended thenie concepts to conflicting dynamical systems.

Such an approach applied to the problem at hand would consider detection

probabilities and that the players have only !.mperfecE knowledge of the

i L
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state of the system, i.e., there is "noise" superimposed on the signal I

as to the location of one's opponent. Such extensions are beyond the

scope of the current modelling effort, but are noted for possible future
p

extensions. The deterministic model is complementary to the stochastic

model and should provide insight into the latter.

c. Application to Problems of Naval Warfare I
We have seen that differential games provide a model for optimizing

conflicting dynamical systems over a period of time. There are numerous
2

applications of such models to problems of Naval warfare:

(I) interception of enemy missiles by ABM's,

(2) allocation of Naval fire support to various targets,

(3) allocation of Naval airpower to ground-support and
strategic targets,

(4) allocation of effort in searching for targets,

(5) surveillance and tracking of hostile vehicles.

These various applications are noted, since the solutions of all these I]

problems involve the use of the same mathematical technique, differen-

tial game theory.

In the current research, we study the problem of surveillance-

evasion, in which the "pursuer" attempts to maintain contact with an

"evader" who attempts to break contact by moving outside the detection

capability of the pursuer. The mathematical structtre of this problem

is closely related to that of pursuit and evasion problems: in sur-

veillance-evasion the problem occurs, for example, within a circle and

terminates on its boundary, while in pursuit and evasion the problem

is exterior to a circle. This research has uncovered some subtle differ-

ences, however.

!
I
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The discrete models of multi-move discrete games [5] (generaliza-

tion of dynamic programming) may be used to study these phenomena under

less restrictive assumptions. The value of the differential game

approach is that it leads to explicit expressions relating the various

system parameters. Thus, the basic structure of optimal policies and

tradeoffs between system parameters may be explicitly exhibited.

The mathematical techniques of control theory show great promise

for providing insight into optimizing the dynamics of Naval warfare.

Many previous analyses involving classical variational methor" may be

more eaeily done and extended by their use. As an example of this,

--'de Guenin's extension (13] of Koopman's results [38] on the optimum

distribution of searching effort is derived in Appendix E by use Qf the

4 iontragin ma~ximum principle.

i
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1 I. REVIEW OF PERTINENT 1. ITERATURE

The published literature was reviewed to find out what had been

done on the topic of surveillance-evasion in order to avoid duplica-

tion of research effort. We do not attempt a comprehensive review of

the literature, since that was not the purpose of thb research. lk,w- -t

ever, some major works are highlighted . Literature was revieved in two

subject areas.: search theory and differential games.
J. Dobbie (15] has published a rather comprehensive survey of

S, search theory in 1968. He iadlcated that the only published work on

*. . he tracking operation in the open literature was by Dobbie himself

-114]. The 1966 paper by Dobbie considers the kinematic aspects of

_-_-7 urveillance-evasion. This paper is the primary basis for the present

-research. Dobbie considers a sequence of problems, formulated as differ- __

ential games: surveillance-evasion for a circular detection region of

the pursuer, tracking for an arbitrary detection region, and two models ..

in which recontact is possible by the pursuer. The content of this paper

has evolved into operational Navy doctrine [16].

A more.extensive search of the literature did not yield any further work

on tracking operations in the open literature. The 1966 survey by

Enslow [18] and S. Pollock's selected bibliography (42] were consulted

in this respect. Both these surveys were consulted by Dobbie for his

survey artile [151. A recent effort at the University of Michigan [41]

was alRo examined and did not yield any new references on the tracking

problem.

The differeutial game literature was consulted for general mathe-

matical background and.,to see if applications to tracking could be found.
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UThe applications literature was constidered of prime importance rathev:

than the development of the mathematical the~ory. Iuaac3's 1965 book

13]remains the chief source~ of vxamples and insight intotechnical

questions related to solving actual problems. His terminulogy is non-

.,..tandard to control theorists, little use or ref,,.rence to the classical

:~variational methods is made, but fie does provide an extensive theory

- - naturally motivated through examples. Isaacs homicidal chauffer problem

is basic to pursuit and evasion studies. He had also considered

-----.~hetracking problem while at CNA (31]. This reference does not contain

-any analysis and the condition developed for surveillance to be main-

*~ ained is incorrect (as is that developed by Dobbie [14]). Isaacs 's

:sketches of the problem indicate that he did note, however, the termina-

--'tion of the barrier.

L. Berkovitz's paper [6] presents am extremely rigorous mathe-

m'~iatical development of differential game theory but presents no examples

* .and does not consider most of the significant aspects required to solve

* - .-specific problems. Blaquiare, Gdrard, and Leitman [8] have recently

published a book on differential games. This buok develups Lte Ltheory

- fromi a geometric point of view and is an extension of the geometric

~aprochto control theory problems developed by these authors over theI

past five years. This previous work is accessable through the biblia-

-graphy in this book. Although some examples are given, they don't

appear to be representative of a broad experience in applications as

is the case of those in Isaacs! book. This book is not written for one

not already acquainted with the theory and is not useful for the novice.



The intimate connection between differential games and control

theory Is pointed out in numerous places (see, for example (6], (23], j-
130]). In view of this relationship, much of the optimal control theory

can be broug to bear on differential game problems. An excellent e

.eview of deterministic optimal control theory with an extensive I
,bibliography is by Athans [1]. An excellent, concise discussion of the

relationships between control theory and differential games is contained

in the review of Isaacs book by Y. C. Ho [23]. Other articles which

contain useful review material are by Ho, Bryson, and Baron [22] and

also Sarma and Ragade (45]. Athans and Falb [21 have written an excellent

I-ntroductory text. The excellent book by Bryson and Ho [9], besides

" eing an easily understood, lucid introduction to the field, contains-

many advanced topics including a briei introduction to differential

7-ames

The Russians have done extensive research on optimal control/

':4 ifferential games over the last decade [3). An excellent survey article

delineating numerous fields of application and with an extensive biblio-

- graphy of original Russian research papers is by Simak)va [46]. Y. C.

Ho, one of the best qualified individuals to survey the current Western U

state-of-the-art, has documented current developments (theoretical and

in applications) [25]. An important question in pursuit and evasion

problems is "When can capture occur?" Isaacs [30] has developed several

(equivalent) criteria for determining the useable part of the terminal

surface. Recently, L. Meier [40] has proposed i new geometrical criterion

from his study of ABM interception of re-entry vehicles.

1

I
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III. The Surveillance-Evasion Problem

We consider an idealized model for the problem of a tracker

(for example, a destroyer) keeping a hostile vehicle (for example,

a submarine) under constant surveillance. The maneuverabilities (i.e.,

maximum speed and turning capabilities) of the two vehicles lead to the I
appropriate conditions. When these conditions are met, the pursuer can

keep the Evader under close surveillance. The Evader cannot do anything

to break contact and prevent this "tracking" or "tailing." We consider

:- ,=an extremely idealized model with perfect information on the location

of the enemy for both antagonists and a circular, "cookie-cutter"

--- etection region for the Pursuer.

a. Statement of the Problem.

________ : We consider the same model used by Dobbie [14], which is an exten-

sion of Isaacs's model [30]. There are several flaws in the earlier

+-mathematical development of Dobbie, which lead to an incorrect condition

for surveillance to be maintained and an incorrect analysis for surveil-

-lance-evasion with arbitrary detection regions. The latter has the

important implication that the involute tactic [16] may not be optimal j
for holding contact in real world situations where sonar capabilities

generate a non-circular detection region. It should also be noted that

the brief work by Isaacs on this problem also yielded the wronf- surveil-

lance condition. Hence, the purpose of the present research is to set I

such analysis on a firmer mathematical basis.

In the model the Pursuer is faster than the Evader, who does,

however, possess an advantage in turning capability. We assume a I
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circular "cookie-cutter" detection region for the Pursuer, who detects

the Evader with probability one when they are less than a distance d

apart. The goal of the Evader is to break contact as quickly as possible

.by moving out of the circular detection region of the Pursuer, who

attempts to maintain contact as long as possible. We define the follow-

ing notation:

subscripts: 1 refers to Pursuer, 2 refers to Evader

' D Pursuer's speed with maximum w

s2 - Evader's speed with maximum w2

R - minimum turning radius of the Pursuer

. fraction of maximum course curvature employed by Pursuer

(4 = -1 corresponds to left turn with minimum turning radius)

- : P - Evader's heading relative to that of Pursuer -

d - radius of Pursuer's detection, region

T - time for Evader to escape (reach circle of radius d from -

Pursuer)

'Thus, the problem facing the Pursuer Is

T

max min dt,

subject to the equations of motion of the two vehicles. It is conven-

ient to adopt a relative coordinate system for tqo reasons: (1) the

dimension of the problem is reduced and (2) such a coordinate system

is standard in Naval operations. In this relative system the Pursuer

is located at the origin and has a verticle heading. Thus the coordinate

system is "carried by the Pursuer." In this system the problem is



T

max! min dt with T unspecified,
1,s ps2 b

b to, dx - yi+.subJect to: sin

-t S1R + S

dt it I -Is 7

SS s r.w <2 2 Wis

wihinitial location of evader q

__LtX(t 0) x0 __

-. y(ti 0) yo,

and terminal su~face defined by

X2(r) +y 2(T) d2

T-"hs qain are derived in Appendix A, since the solutl arocedure

relies on an understanding of the geometry of this relative coordinate

_b. Games of Degree and Games of Kind.

In this section we discuss the..concepts of a,,gam~e of degree apd

a game of kind. The purpose of this discussion is, to explain that in

order to solve a gamc of kind one must solve that part of a correspord-

ing game of degree into which the game of kind has bee ,n imbedded. 'The

-common part of optimal strategies for these two games is the barrier,

i.e. boundary of dom in of controllability.
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Isaacs (30] p. 35) defines a game of degree as one with a contin- I
uous range of payoffs. In the surveillance-evasion game, the formulation

of the previous section is a game of degree with time of escape as the

payoff. A game of kind is one with a finite number of payoff values. The

reaching of each particular terminal state yields a single payoff value.

Such is the case if we consider the payoffs as +1 if contact is broken

and -1 if the Evader can't break contact. Blaquiere et al ([8] pp. 9-10)

have a similar definition except that a quantitative game (game of degree)

--is a game in which there is a common target set for both pursuer and

evader. It should be noted that there are attrition games in the liter-

ature for which this definition is inadequate [47].

We define the domain of controllability of a terminal state to be .

__-that subset of the initial state space from which trajectories lead to

this terminal state for all admissible strategies of the player for I
-which this terminal state is unfavorable when the extremal strategy of

his adversary is played. By an extremal strategy, we mean a strategy

-tetermined on an extremal trajectory, which is a path on which the

necessary conditions for optimality [6] are almost everywhere satisfied.

_The barrier, being the boundary of the domain of controllability, is

the trajectory which leads to the boundary of the useable part of the

terminal surface. The useable part of the terminal surface is that part

of the terminal surface to which there are paths from the state space

(see Issacs [30] p. 83 and also Appendix B).

Thus Isaacs (30] p. 13) imbeds a game of kind into a geme of

degree. We may consider a game of degree as a game of kind in which

the prerogative of each of the antagonists is exercised to do his "best."

41*
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The point being developed is that one must know how to solve a

game of degree in order to solve the corresponding game of kind. Other

uses of the game of degree solution are

(1) show path of system when prerogatives are exercised,

(2) when the prerogative is not exercised by one party, indicates
direction system will move.

The latter remark is the motivation for Isaacs's concept of a semi-

permeable surface (Q30] pp. 70-71).

Let us discuss further the concept of a semi-permeable surface,

since even one of the leading control theorists has overlooked the "

reason for this concept in his excellent review of lsaacs's book [23].

Initially, we consider a game of degree and a simply-connected

.domain in the state space. When the problem has a solution, this

_ _-omain is covered by a field of extremals [17]. We can transform our .,

original problem to one with terminal payoff, so that the value of the

-Same, denoted by V, will be constant along an extremal. Consider now

Figure 1. Three extremals with the accompanying value of the game are

-hown. If extremal strategies are used by both players, the trajectory

remains on the extremal. If the Pursuer uses his optimal strategy f

but the Evader uses a non-optimal strategy, then. the course of the

system is steered to lower payoff values and similarly when the roles

are interchanged.

To reiterate, the semi-permeable surface is a surface in the
state space for which each player controls the penetration by the path

of the system by use of his optimal strategy, When a player employs

his optimal strategy, his opponent can't steer the system to a more

favorable position by any strategy, and if he doesn't use his own optimal

I,
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strategy, a less favorable outcome will result. This situation is a

consequence of the criterion functional having a saddle point when

optimal strategies are used. The purpose of Isaacs' introduction of this

concept of a semi-permeable surface is that the barrier, the only place

where optimal strategies are determined for a game of kind, is a semi-

permeable surface.

The barrier is a surface in the state space (Isaacs refers to the

state space as the "playing space") which divides the capture and escape

zones when both exist. The global answer to the capture-or-escape ques-

tion depends on whether or not the barrier divides the state space into

two parts. Hence, we know that if we can show that the barrier termi-

nates without having done this, the entire state space is either all

capture zone or all escape zone. For the problem at hand (surveillance-

- evasion) this means that there is probably no surveillance zone if the

barrier so terminates. Termination of the barrier is discussed in

Isaacs's book [301 on pages 210-214. The argument given there that a

barrier terminates due to an abrupt change in direction (see Figure 2)

is best understood by recalling that a game of kind is imbedded into a *1
game of degree. In this game of degree, each behavior would lead to

more than one extremal at a point in the state space.

c. Connection with the Homicidal Chauffer Game

The research philosophy has been to employ a "broad" approach to

specific problems by drawing upon theory from diverse fields. For

example, consideration of the geometric properties of complex numbers

has led to a geometric way to construct extremal paths in the homicidal

chauffer game. This led to the correct condition for termination of the
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barrier (and hence the existence of no surveillance regioh), which had

eluded both Dobbie (141 and Isa4cs [31]. i
Consideration of a sequence of closely related problems has been

attempted to try to learn from their common points. Three such

closely related problems are:

(1) destroyer to fixed destination,

(2) homicidal-chauffer game,

(3) surveillance-evasion game.

In working on the surveillance-evasion game, consideration of the first

two problems has proven to be useful. The study of these has many

points in common with the surveillance-evasion game. Hence, analysis

-=of these problems is presented in Appendices B and C as bacl:ground

material.

Specifically, the relationship of the homicidal-chauffer game and

the surveillance-evasion game is as follows (as first pointed out by

Isaacs [31]). Consider the terminal surface of the homicidal-chauffer

game. It is a circle, and the state space for the game is exterior to

-this circle. For the surveillance-evasion game, the state space is

interior to the terminal surface with the useable and non-useable parts

of the terminal surface being interchanged. A point worth noting (again

first pointed out by Isaacs [31]) is that most pursuit differential games

can be converted into surveillance games by turning the analysis inside

out.

d. Solution of the Surveillance-Evasion Game

In this section, we show the solution to the game of degree. Analysis

details are presented in Appendix D. As noted in Section llb, we may

ILI



consider the gahic uf kind as imbedded in a game of degree. Hence, when

we consider the problem as a game of kind (Is It possible for surveil-

lance to be maintained?), optimal strategies of the game of degree only

apply on the barrier for the game of kind.

Before discussing briefly the geometric aspects of solution, let us

summarize the new results of the current research:

(1) correct condition for surveillance to be maintained,

(2) new geometric construction for escape paths,

(3) extension of model to non-circular detection region.

An important question to be answered by the model is, "Under what

circumstances can surveillance be maintained?" The correct answer is -

when

-4d k R. V-1(w2 /w) + 2 (w 2/w 1)(r 4) (2)

.,where

cos 1A w 2/w I and 0 r.U r.4r2.j

Dobble [14] and Isaacs [31) had derived different conditions.

We also have discovered a geometric interpretation for the optimal

escape paths. For 0 ig I a 2R/w I( - u), the path equation may be

written as

COS W, T/R sinw W,)/R (d - T w)sin u -R

Y() -sin w T/R cos w T/R (d - T w2 )cos

where U u r/2 and cosUA w2/w, 0 g U s. /2.

T - T - t i.e., time measured backwards from escape.

J



This equation says that the Evader's location on an optimal escape path 1
may be obtained as follows (with reference to Figure 3): 1

(1) locate escape point on detection circle, for example Al,

(2) point moves along line OA with speed w2  towards 0;
at time T it is at A2,1

(3) rotate A through angle w t/R in negative sense about
point (R,0); this yields 1 , the point on the optimal
trajectory at time i,

(4) maximum possible rotation is through angle 2(7 - u), where
u is angle between line from escape point on detection
circle to 0 and the positive y-axis.

At a later time T2, the point has moved to A and is rotated to
2' 3

A' on the escape path. When the optimal trajectory is the barrier,
3

-there is an additional special geometric property of the escape path.

- t may be shown that the barrier is an involute to a circle of radius

R w2/wI with center (R,O). Hence, at each point on this curve, the
2 1

anormal is tangent [121 to the circle just mentioned. This is illustrated

point A2' in Figure 3. For non-barrier escape paths (consider path

B B'B, the curve is not an involute to any circle, but the same geo-

metric construction holds.

This geometric conatruction provides deeper insight into the

geometry of escape paths. (A similar geometric construction is possible 4

for both the destroyer to fixed destination problem and the homicidal

chauffer game.) It suggests that there may be a conjugate point [44] A
to the escape point on an optimal trajectory, i.e., neighboring extremals

intersect at this point. Such a point is B' in Figure 3. Further

investigation of this phenomena seems warranted but time hasn't permitted

it. The geometric construction suggests that the problem may be more

tI
|I
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easily solved in relative polar coordinates, but this has not been

explored too far as yet. A similar construction results when the solu-

tion is extended past the time restriction above. We note that the

y-axis is a line of symmetry for this problem.

We have briefly examined this problem for a non-circular detection

region. Our research indicates that Dobbie's [14] approach is incorrect

and that the problem should be re-examined for some simple non-circular

geometrics. This implies that the involute tactic [16] may not be

optimal for non-circular detection regions. The justification for

-these statements is given in the next section.

We now consider the geometry of the solution to the tracking pro-

: blem. We shall describe the optimal trajectories (as far as the current

xesearch has progressed) and optimal tactics. The type of geometric

-- ->configuration for the escape paths depends on the craft speeds, the

-Pursuer's minimum turning radius, and the radius, d, of his detection

egion. We. let

d = R{I -(w 2 /wl)z + 2(w 2 /wl)( -U)), (4)

d2  R{/1 -(w 2 /w1 )2 +(w2 /w( r -U )+ 11, (5)

-where

cos U w /w and 0 :c w/2.
2 1

Then, there are three cases (see Appendix D for details):

(1) d < d1  no surveillance region (of type in next two cases)

(2) dI  d < d2

(3) d z d barrier meets the negative y-axis.

2

S
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These three cases are shown in Figures 4 through 6. In all cases the

barrier is the involute to a circle of radius R w2/wI and center

(+ R,O). The tangents to these circles from 0 are of special signi-

ficance. The escape paths are symmetric with respect to the y-axis,

and hence we discuss the solution only in the right half-plane. Let

u be the angle between line from escape point on detection circle to

0 and the positive y-axis. The equation of escape paths is given

by (3) for range of T given there.

In case (1), the barrier terminates when it reaches the circle

of which it is the involute (see AA' in Figure 4). Paths which terminate

between A and B are given by equation (3), but it hasn't been ascer- -4

tained whether such paths terminate abruptly (yielding a dispersal surface)

for T A T 2 R/wI(w - u) due to intersection of neighboring extremals.

Escape paths have not been traced backwards for T k xI. Thus, although

there is no surveillance region of the type for cases (2) and (3), the

optimal escape paths have not been determined from all of the state space,

--and there may be "surveillance pockets" present. Hence, we have estab-

lished the Evader's escape tactics only in the small region AA'CB, when

he is close to the limits of the Pursuer's detection capability. One

disturbing feature of this model is that for escape at x(T) - d sin u

and r/2 < u < 3/2 n, the Pursuer's optimal tactic is to stop dead in

the water, sI W 0. Such escape paths (shown in Figure 4) terminate

at D, E, and F and originate from 0.

In case (2), the barrier divides the state space into a surveillance

zone and an escape zone. For U 9 T S TI a 2 R/wI(i -T), the Pursuer

uses * - 1 (sharpest turn to right). For T > TV the Pursuer uses

- -1, and the barrier is given by
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Figure 4. Geometry of Tracking Problem, d < d.
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[x(i)+R Cos WI (t-I 1 )/R -sin w (T-i)/R X('l)4w 2 (-'r)cos(7r/2- +R

fxu) (6)

Sy(T) s in w (T-T!R Cos w (T-TI)/R J y(T )-W2 ( -,r)sin(Tr/2-U)

which may also be shown to be an involute unwinding from a circle with

center at (-R,O) and radius R w2/w,. At T - T, the point D is

always located on the lower tangent to the circle as shown in Figure 5.

It lies between 0 and D' (when d - dI, it is at D'). The paths

terminating between A and B intersect each other, but complete

details have not been worked out as yet. Again, for escape at x(T) - d sin u

and r/2 < u < 3/2 r, the escape paths are straight lines terminating

at, for example, F, G, H, and I. Paths in the vicinity of ODE (a "pocket")

haven't been worked out.

In case (3), the Pursuer only uses I - 1 on the barrier, since

it intersects the negative y-axis before T - VI. When d - d2, the

barrier is tangent to the negative y-axis. Other aspects are similar

to above. This case is shown in Figure 6.

e. Shortcomings of Previous Work

The differential game solution techniques of the current research

differ from Dobbie's approach (14]. It is the purpose here to discuss

such differences, since some of our results differ from his. Dobbie,

considering a game of kind, uses Isaacs's "game of kind approach,"

(see chapter 8 in [30]). As we have discussed above, Isaacs developed

this approach by imbedding such a problem in a game of degree. The

analytic details of many steps in the solution of a game of kind (see

[30] pp. 205-210) will be seen to be the same as employed here (game

of degree) with the vector of dual variables p replaced by the normal

to the barrier V. The Hamiltonlan is also modified slightly. However,
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two important aspects are not adequately treated in Dobbie's work [14]:

(1) termination of the barrier (see [30] pp. 210-214),

(2) construction of the barrier (see [30] pp. 214-215).

As we have discussed above in section IIIb (see also Appendix B),

whether or not there is a surveillance region is dependent upon whether the barrier

terminates or not. This aspect of solution is ignored by Dobbie, whose

condition for the existence of a surveillance zone should be contrasted

with ours.

A more serious criticism must be leveled at Dobbie's method of

determining the useable part of the terminal surface, denoted as UP.

Dobbie does not make use of the fact that every game of kind is imbedded

in a game of degree. Hence, he does not recognize that the solution

depends on the geometry of the detection region and erroneously concludes

that the solution for a circular detection region would apply for an

arbitrary detection region ([14] p. 177). The purpose of criticism

of Dobbie's results is to point out that the surveillance-evasion problem

has not been solved for arbitrary detection regions and suggest such a

task as a future research effort.

Let us discuss why the solution depends on the geometry of the

detection region. Isaacs ([30] p. 215) states a critericon for the

construction of the barrier: the normal to the barrier coincides with

the normal to the terminal surface. This leads to our major criticism

of this pioneering effort: Dobbie tried to extend the model's solution

for a circular detection region to arbitrary detection regions when

such an extension is not justified.
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We consider a second argument (from optimal control theory) for

solution dependence on geometry of detection region. Dobbie (p. 174)

says, "Let t - 0 at a point A of a barrier for which yvI - xv2,

so that the normal lies along the radial line OA." Since t - 0 is

time of escape, the barrier is tangent to the detection region at

escape (normal of barrier is perpendicular to escape surface) for a

circular detection region but does not have to be for an arbitrary

detection region. It is well-known in control theory (see [2] p. 290)

that p is parallel to n where p is vector of dual variables at

terminal surface and n is normal to terminal surface (pointing inward

to state space). For the problem at hand, the normal to the barrier

(in Dobbie's notation) is parallel to p. Hence, this normal must be

perpendicular to the detection region at the moment of escape, and this

condition may be violated in Dobbie's analysis for an arbitrary detection

1

region
i J i i i J -I
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IV. Conclusions and Future Extensions

Here we summarize what we have done and suggest possible future

research. We think that we have established more firmly the mathematical

basis of a certain type of surveillance-evasion model. Specifically,

we have accomplished the following:

(1) parts of the surveillance-evasion game of degree have been
solved (A disturbing aspect is that the Pursuer stops still
in the water for those cases when the Evader escapes "behind
him.").

(2) correct condition developed for surveillance zone to exist,

(3) devised geometric construction for describing optimal escape
paths,

(4) showed that Dobbie's extension of the solution to arbitrary
detection regions was incorrect.

Based on this research effort we suggest the following as possible future

-- work:

(1) develop further the solution to the game of degree (This
would provide insight into Evader escape paths and tactics, I
especially for those cases when contact can be broken, i.e.,
no surveillance zone.), I

(2) examine problem for non-circular detection regions (This
" would allow actual sonar patterns to be more accurately

described in the model. We suggest that analysis first
consider an elliptical detection region and then try to
generalize results.),

(3) consider surveillance-evasion game in relative polar
co-ordinates (This approach is suggested from new geometrical
construction noted above and is related to tasks (1) and
(2) above.),

(4) study extensions of basic surveillance-evasion scenario,

(a) formulate problem which eliminates a stationary Pursuer
as an optimal tactic,

(b) study effects of Evader having maneuverability limita-
tions (What quantitative effect does this have on

i

.1

I'
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condition for Pursuer to have surveillance zone? This
would be an application ot the extension of Isaac's
homicidal chauffer game called the Same of two cars
(301 p. 237.),

(c) study problem of two Pursuers against a single Evader,

(d) develop other models of tactical interest and study
other extensions in the literature.

I

I
i

I

- " ", . . . I.

I
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APPENDIX A. DERIVATION OF BASIC EQUATIONS.

In this appendix we derive equations (1) of the main text. Even

though these equations are briefly derived on p. 30 of (30], we feel

that the current derivation has increased our understanding of the

relative coordinate system and may be useful to others. First we

translate the restriction of a finite, non-zero minimum tuLning radius

into a restriction of the maximum rate of change of direction. Next,

we develop the basic equations in a fixed reference frame. Finally,

the equations are transformed to the relative coordinate system.

a. Implication of Finite, Non-zero Minimum Turning Radius.

:- We consider motion of a point in the plane when the radius of

curvature is bounded below and greater than zero. We assume that the

- point is moving with constant speed w and adopt a fixed rectangular - _

frame of reference as shown below. The curve is given parametrically

by

xI
L * ...* X

il
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x = x(t) and y = y(t), where t is time. Hence, the velocity

components are given by

dx e,dt j o ,

(Al)

d w sin e.
dt

If there were not restrictions on maneuverability, then we could choose

8 - 6(t) in a completely arbitrary manner. Let us now see how a lower
de

-bound on the turning radius restricts 0 - e(t) through d-j ....
dt'

We consider a curve in the plane given by x - x(s) and y - y(s),

where the parameter, s, is arc length. The curvature, K, is defined

as the rate of change of angle of inclination, 0, with respect to arc

length (see pp. 280-282 in [12])

lim A6 d6
aslm ds'• : ~As-*O s d'

where the angle of inclination is shown in the figure below and the

slope of the curve is related to 0 by tan 6 - ddx":

4 /.
\%S /

2
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The radius of curvature of the curve at a point is defined by p - 11K.

The restriction that the radius of curvature is bound below may be

expressed as p I R > 0 or K : I/R. Introducing a new "turning"

variable, we may write this as an equality

K O-/R where -1 s ; 1. (A2)

Since time is a more convenient parameter than arc length, we have

do do dt do/ds
ds dt ds dt "t (A3)

Recalling that ds - Vs-''-d-T, we have that

da _+ () W, (M4)

by use of (Al). Combining (A2), (A3), and (A4), we obtain

" do Ow/R where -1 s z •1,

t

which is the desired restriction on e(t) from the luwer bound on

--the "turning" radius. We summarize the equations of motion in a plane

when there is a lower bound on the radius of curvature, R.

dx~ w Cos 0,
dt

dt wsn0

do
-~- *w/R where -1 g g 1. (A5)
dt

b. The Relative Coordinate System.

It is convenient to adopt a relative coordinate system, one that
!r

l __1
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moves with the observer. Our development is the same as Koopman's

([38] or again [39]). We consider first the simple case of motion at

fixed speed and course for an observer (who carries the coordinate

system with him) and a target. Assuming both the observer and the

target move at constant speeds in straight lines, we let

v - speed of observer in knots (ocean or true speed),

u - speed of target in knots (ocean or true speed),

w - speed of target relative to observer in knots.

The corresponding vectors, v, u, and W, describe the constant

motion. We note that the vector difference, w , u - v, gives the

motion of the target relative to that of the observer. Figure Al shows

the relationship between true and relative velocities and angles. In

Figure Al the vectors are "laid off" from the same point. The actual

- situation is shown in Figure A2.

Thus, we consider a coordinate system moving with the observer
(see Figure A3).

(or Pursuer)' The y-axis of this coordinate system is coincident with

the observer's velocity vectory. P is a fixed point, located at the t

origin. The point E (which may be either moving or stationary in

the fixed reference frame) moves relative to P. We later derive the

equations of motion of E relative to P. We note that in this rela-

tive coordinate system, there are two factors contributing to E's

motion:

(I) rectilinear motion of P and E,

(2) rotation of coordinate system when P turns.
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y!

I 1

Evader, E

is relative heading of Evader

wI

Pursuer, i--

ox

Figure A3. The Relative Coordinate System.

c. The Basic Equations in a Fixed Reference Frame.

We consider the motions of a Pursuer, P, and Evader, E, in

a stationary coordinate system. We consider the problem of the Evader

trying to break contact with a Pursuer by moving out of the Pursuer's

" detection region, which is circular with radius d. We use the

notation defined in section Iia. of the main text. The situation is

shown below.

y A

tt IA

- ---. - --- -- ~ -- ,-, -. --- * .-
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We have seen above that the non-zero minimum turning radius, R, of

the Pursuer yields a restriction on the rate of change of a " .

da_ . S /R where -1 f. s 1
dt 1i

Hence, in the stationary coordinate system the surveillance-evasion

problem may be stated as

T

max min dt with T unspecified,
s1  / 2  6 -"NNN-

subject to: cos a,

S sin a,
dt 1

, - /R where -1 1,

dx 2

dt

dy 2
dt 2

where Oss 2 w I

with initial conditions

x11(t=O) = x0 , y1 (t=O) Y0 
, c(t'O) a0,

" (t-0) = X0 ,y 2 (t-0) Y,

and terminal condition

[X1 (T)- x2 (T)]
2 + [yI(T)- y2 (T)]

2 = d2.
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d. The Basic Equations in the Relative Coordinate System.

We now transform the above equations to the relative motion

coordinate system discussed previously. In this new system x is the

distance the Evader, E, is from P in a direction measured perpendi-

cular to F's heading. In this relative coordinate system there are

two factors leading to the apparent motion of E:

-(l) rectilinear motion of P and E, and

(2) rotation of the coordinate system when P turns.

.. ThP aompon:nts of velocity due only to translation are given by (see

...,-Figure A3)

(dx) s2 sin J,

• t

= ----- --- d1) = - co - s .

-since P's motion is always directed along the y-axis. We next derive

the components of velocity due only to rotation with angular velocity 
jl

dQw - -. When P turns to his right ( - 1), E is rotated counter-

clockwise about P. We take w to be positive when countez-clockwise.

Then

dx de

t - -wy - -(-9y - -sly /R,
r

d ) a (x -M s x /R.

Using the fact that d x d x d X
Tt T ) + (T)

t r

equations (1) of the main text are readily obtained.

u u - u " u u I
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APPENDIX B. DESTROYER TO FIXED DESTINATION

In this appendix we derive parts of the solution for the best way to

steer a vehicle with a minimum turning radius to a fixed destination in

least time. We call this problem "destroyer to fixed destination." It

is of special significance, since it is the limiting case of the homicidal

chauffeur game when the Evader's speed goes to zero. Study of this problem

has increased our insight into these pursuit-evasion problems. The new

geometrical construction for optimal paths was first suggested in our

study of this problem. As a general principle, many times most of the

significant solution aspects of a differential game may be studied by con-

sidering a one-sided version of the problem.

We state the problem and then present the details of analysis. Next,

we discuss our new geometrical construction for optimal trajectories in

such problems. Finally, we discuss the geometry of the solution and

summarize the analysis results. Many solution steps and aspects are ex-

plained in elaborate detail in this appendix. i
a. Statement of the Problem.

.The problem is to determine how to steer a constant speed vehicle I

with minimum turning radius, R , from any point, (xlY I) , in the plane

to within a distance, Z , of a terminal point, (x2,y2) , in the least time.

In a stationary coordinate system the problem is

T

min dt with T unspecified,

0
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dxsubject to: - w cos 0

y * w sin e
dt

do - w/R where -i < < ,
dt

with initial conditions

x(t - 0) - x1 , y(t - 0) - Y1  e(t = 0) =

and terminal condition

[x(t - T) - x9 2 + [y(t - T) - y2]2 .2

We transform this problem to the relative coordinate system of Appendix

.-A in the same fashion as shown there to obtain:

T -

min dt with -T unspecified ,
o

dx w
subject to: dx yO

w x -w where -1 < q < 1 ,(Bl)dt R

with initial conditions

x(t -0) x 0 , y(t 0) -Y 0

-_and terminal condition

x (T) + y2(T) Z 2
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b. Development of Solution

H mionian, H(t, x j P,_4

H(t, x, p. 4) - I + pl(- y) + p2(R x -w) , (B2)

where p - and P2 " 0* are dual variables and J* - min dt

y do

We determine the extremal control from

Min H(t, x, p. ¢) - mini w 4(p 2x - ply} subject to -1 f A I .

Hence

- sgn(ply - p2 x) - sgn A(t) , (B3)

!+I for x '0
where A(t) u ply - p2x and sgn x - -

-1 for x 0

Boundary Conditions for Dual Variables

Since termination is any point on a curve, we must have p - (pip2

normal to this curve at t - T(terminal surface) (see [2] p. 290). We

let n be unit normal to circle (terminal surface) pointing into the

state space. Then n - sin s i t cos s j , and we have p - . Since

the constant is arbitrary, we let it be I and hence

pl(t - T) - sin s, P2(t - T) - cos s. (B4)

Usable Part of Terminal Surface

Because of the nature of the relative coordinate system, it is not

possible for paths from the state space to end anywhere on the terminal

2 y2 -2
surface x ()+ y ( Physically, the terminal surface is a circle
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about a moving point. In a fixed coordinate system this circle moves

with the point. Consider a line perpendicular to the point's valocity

vector and passing through the point. This line divides the circle into

two parts: one part is ahead of the point's motion and the other is be-

hind. The problem ends when a fixed point, the destination, crosses the

moving circle. Clearly, forward motion of the point can never cause a

fixed point to cross the rear half of the circle. In the relative coordi-

nate system, we can describe this condition mathematically as n • X < 0 ,

where n is unit vector normal to the terminal surface and pointing into

the state space and... .

dx"

- dt

dt .

is the vector of velocity components in the relative coordinate system of

the moving point (destroyer). That part of the terminal surface for which

"capture" can occur is called the u seble part (see p. 83 of (30]).

For the problem at hand we have I

n= sin s I+ cos s J

x- ( y) + (';z - w)j
RR

where the terminal surface is parametrically represented by s as shown

below.

.;

I
'i

!-
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yA

x

Becwe have

x(t = T) = Z sin s and y(t = T) = f cos s.

-: :Then '"'

'(t -T) = cos s)i+ z sin sw)
R R

and hence

" • x(t T) = ( cos s)sin s + (- , 9 sin s - w)cos s

n X(t = T) = -wCos s 0 0 , (B5)

defines the usable part of the terminal surface. Thus cos s > 0 for

capture to occur and the useabLe part, UF , is given parametrically by

- - ,~IT ~ 2. IT,

Equation (B6) siply says that "capture" only occurs in the "front half"

of the circle about, the moving point.

The boundary of the usable part of the terminal surface, BUP, divides

the terminal surface into useable and non-usekle portions (see p. 83 (30]).
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The paths which terminate at the BUP are then the barrier, for they

Separate the state space into regions from which paths either do or do

not "lead directly" to the UP. We have noted in the main text that lsaacs'

concept of the barrier corresponds to that of the boundary of the domain of

controllabilitv in the control theory literature (23]). We now see that

we can determine the barrier by projecting the BUP backwards in time before

capture.

The Adjoint Equations and Their Solution

We have that

dpl - w
dt = - P2 Ra-nr

dp 2  DI- w_

dt y R~

Since the boundary conditions for the dual variables are given for t = T

it is convenient to ler T T - t and integrate the adjoint system back-

wards from the end. Accordingly, we obtain

dp 1  )=sn
dI wd T " = P 2 R P l (0 0 ) = s i n s ,

dp 2  w
dT = -p 1  0 P 2 (7 = 0) = cos s

We may combine these equations as follows;

2p d d2p
d _dP 2  w w, 2 o 1  w 2d t R 6, = p -P -R )  o r 2, 0 2+

__ 2 dt R dT 2  R 1

II
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ft:c c
w; I!

= A cosi--- I + B siu

with initil~ condition.

= 0) =. sin s

dp1
d- 0) 2- 2 = 0) "R t 0 PB cos s - B ' cos s

Substituting for the constants and simplifying we find

Pl() - sin(s + w1) (B7)

Similarly, it may be ..Ilown that

= cos(s -.- .'i) (B8)

Solution to the State Equations

In the "backwards time" -,',e"-

dx _w

di =0 × O) = sin s,• ' ':"dI R y  "

dv w
d i ) = ,c o - s " 

4e combine these equations to .ie.r ;rJui a second order equotiori for x -

as follows

2 2 1d x w . 2 w 
d L 

, 
R R

2 2
d x R 2 w

d - )x -R
di
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The solution to the above equation is given by

w w R
x(1) = A cos R + B sin w i , .1

where the constants, A and B, are determined by

x(T =0) = k s~n s = A + - - A = . sin s

dx W( -- wB wow I '-
I T= 0) = 4) y(i = 0) = 4 2 cos s = B B Z cos s

Hence, after some simplification, we obtain:

X(T) £ sin(s + w IT) + (I - cos ) (B9)
R

Similarly, it may be shown that 1
Y(I) = 2 cos(s + w CT) + R sin w 6. (B.IO)

R 4) R

Note that the above equations (and also (B7) and (BS) hold from the terminal

surface (T = 0) until a transition surface is reached.

Transition Surfaces and Termination of the Barrier.

We have seen (equation (B3)) how the "steering"' variable (this

variable determines the rate of change of heading for the moving point in

the fixed coordinate system) is determined by

-- sgn A(t) , (B3)

where A(t) = ply - p2x . There is a problem, however, at t = T , since

A(t = T) A(T = 0) = sin s(£ cos s) - cos s(. sin s) = 0 We can overcome

this by a continuity (with respect to i) argument. Moreover, we have

L I
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diA dl dv d dx

- (-I P.d '
=7 :  '-4 :" " It d. '  -p a  1 4 -

- ,." ) - t- ;) -p2 Yw)

. W w sin( - + w ) wi t- A( 0) = 0

and then we finally obtain I:

A([)= I -C 0 S .,;(S W (BI1)R

Thus, for 0 _ i (where I1 will be determined presently), t

-1 f C,-1 for - -s .0

+1 for 0 ,. s

Since optimal trajectories are symmetric about. the y-axis, we only consider'

solution behavior in the right half-plane of our relative coordinate system.
Consequent-lv, for 0 s - , we determine as follows: it is the

first time that A(-) = 0 after , 0 . This happens when

o - cos (s + ." .

wicth J.s precisely when

k A':" 2 .2 - S = S + _W" I ... 5

Hence, for 0 s ,/2 we ha,*--

2R" --... (7 - S) . (B12) - •

'Equation (B12) determines ri such that ¢,(T) = 1 for 0 - < I . For

we have A()' 0 (we. have not proved this) and hence. t() ( -1 ,.j



49

on optimal trajectories in some interval past i Hence, the :ocus of

such points where (B12) holds defines a transitior. surface.

For s = w/2 , we have the barrier and hence ,(i) = 1 on this "ri-ht

barrier" for 0 -: i R7/w From (B9) and (30), the equations of the

barrier are

- R - -) s T ,

, " ygr) - (R- i) si'n - ,

, whicii we may w-Ite as

X(,)- R cos I . -

I. I, W "
, Y('T) I-sin - - cos "

": ( , / , " i , ' -"" "

tnat R
This equation says'to determIne a point o. the barrIer at t:ime r - ,

,.. " , .; "- - I

w"e rotate the Voint x = - R , y =,.O through an ag]e -7 in the

negative (counter-clockwise) sense about the point x x R , y = 0 Hence,
R t .

for 0 < r - t , the barrier traces out the curve sh:,w, bouw in 1Igure BI. .
: •.. *," ''1

Barrier ... ,•Barrier

F i g u r - . B .rr i r (o to ) FeI n x

Figure BI. Earricrs to Desftroyer to Fixed Destination Problem. ;
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S il 1.1 in why this barrier must Lerminate at 1 ITL/w.

V ,.'c pvtilslv discussed this subjecL in secLion IlIb L f the main text I
(s,'c ,i . .i --i-2i - o [30]). 10 su alrll.zl-ieu, there are two equivalent

I i1cR ii.1 1,, tvrminlt io of tl , barrier:

(I) (| .ia,:;) due to a change in the orientation (direction of travel)

ot the barrier curc this semipermeable surface cannot be

Cstended,

(2) (aylor) the barrier terminates if its extension would lead to a

mill Li overing" of extremals in the region of extension (with

the extension being non-optimal).

For tie problem at hand, for i - -t = rR/w and s = r/2 there would be

a cusp (tangent to curve continuous but both dx/di and dy/di change

sign), since tile extension (we have not proved this) would be an arc of a

circle with center (-R,O) with € = -i , i.e., curve "changes orientation

and there cai1 De no semipermeable continuation" ([30] p. 211). We recall

that for x - x() and y = y0)

dv ,dii--

dx dx
dr

Thus we can have the tangent, dy/dx , continuous but both dx/dy and

dy /d; change sign. The curve has a cusp at such a point. For the problem

at hand, the continuation of the barrier past Ti would produce such a

cusp, but a cusp is not necessary for termination (see homicidal chauffeur

amv Appenuix C).
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We might also argue ajong tie lines of (2) above thiat if (in the

game of degree) the bacriOr were to be extended, it would intersect ad-

jacucnt extrcmals causing a "ail ti-valied sO] Ution. Hence, we discard the

dashed port ion shown in P1 lrke W.

Cont inuat ion of Solut ion 1s! 3lins it ion Surt re

Continuation past = 2: /w( - s) for 0 - s - 1/2 , results in

an arc of a circle with center (-K,O) with travel for increasing - in

positive (counter-clockwise) direction, i .,., = -1 . Time has not.

allowed all such analysis details to be worked out.

The Sinjular Solut Ion (Universal Surface)

Fcr the problem at hand, the l M I tonianr is a I inear f-Uct ion of

the control variable I

H(t,x,p,4) = (p 2 x - ply) + (1 - p21 )  (B14)

with the control being determined by (B3) except for when thi coefficient

of 4 vanishes for a finite interval of time. In this case we have a

singular solution [32], [33] for which the necessary condition of maximizing

the Hamiltonian (with respect to the control variable 4 ) does not provide

us with a well-defined expression for the extremal control. Isaacs

([30] Chapter 7) uses the terminology universal surface.

A singular extremal is detcmined from the conditions [32], [33]

d 91H d" M1=0 and ,t C. -r 0 etc. as needed
dt d
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-o hI p rubI 11 t hand wO a so have h (L,X,p,4) = 0 , since the termination I
I tI I i ,n L,,' it il . Al so, abcvc uqua t ion (BI ) we saw tha t dA/d1 = p w

wT , s nII A(t) , we have the following equations fzr a
,ing,,la, subarc"!

1 -1 2 w 0

%4.

w-(P 2X - ply) - 0

'Ind p1 w-ik = 0

lHenct, we see that on a singular subarc we have

p.,(t) 1Iw > 0

p1 (t) , (B15)

0!x(t) = o0~

The singular control is determined by the above conditions that the dual

variables are constant for a finite interval of time. Recalling that

dp /dt = -¢p~w/R and dP2/dt = plw/R , we see that (t) = 0 is the

required singular control. A physical interpretation is enlightening:

once the destination is straight ahead (x(t) = 0) , the destroyer steers

a straight course (*(t) = 0)

We must further test to see if this singular solution can yield the

OptiEral return; i.e., minimumi time. i. necessary condition for a singular

subarc to yield the minimum return [34] is (see also [30] pp. 187-188)

a2 '."-
dtL
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We have already showu Lhat d/dt(Al/,,) = pjw2IR . tence

TIMS2 (-c d1 w/ = -w/ 0
d2 .:A).= citwl -pwwl)

dt
Thus

.Ji--2f1LI1  = -p>,,"(wt/R) (Bib)

3+dt2  LWq)J

But on the singular subarc (Bi5) must hold, so p(t) 1lw. Hence, on

the singular surlace

q

A 2 {+J = (wtR)2 0 ,

and the necessary condition is met.

c. The New Geometrical Construction for Optimal Trajectories.

The following is given to show our original motivation in developing

this geometric interpretation of the solution to the state equations.

Others may prefer the analytic geometry of transformations of ordered

pairs, but we usually remember such things by considering complex numbers.

We start by recalling ([I1] p.8) the well-known geometric interpretation

of complex numbers in which a complex number is represented by a point in

the plane. With this interpretation, we may then develop that multiplication

by a complex number of unit modulus corresponding to a rotation. We now look

for an algebraic representation. It is well-known that the field of con-

plex numbers is isomorphic to a field of 2x2 matrices with the correspon-

dence being given by

a -b
a + ib

,b a,



I It'I Wv tu tEL. 1.1t tinjl:: ioll (Living , titlo1cus o et tilt' trasit ion bur-face,

s Ii
Uv17)

( 511Ck's 2s. Z c'os s

Is einiVIct~l to (HStk'p 1 25 il [I I

uxH 1\) +iy% V [(sn ) +l cos CS K

I I, ilis z, , t a a ; La ion oRI thli point rtL;, kCOS

t Igli a ing 1 e 2s in t lie pos Hit Li Vt HtLlSC (countcr -c ic wi iso) about thle

p' i [it \ -K,\-O. ) At t or we rcognlie t his, we mlay , of Course , use

* i CliI gvolle l% 011 O1 f\ 1t i le it Sallie C0liC Uins L'U

TIS.w-. cons ider opt trial 1 rajk Cc ories in thle right hil -plane for

0 21(R - s)/w. We may write equation (B9) as

Sill - R) =O. w HLU Z Cs S ilK B8

Sifrilarlv. eqlnt ion (B10) becomes

/ ' - 14 ni.9
k.. .u 1bIL 1) I k L9

t 'e may write the above as

tr 0 s r/12 anLd 0 1=2R/w(r - s)

-K ,:0" ces 1 I sin - I N(T M
R R

=1 / (B20)

yQ. \-SLn c 05 1 / K (T)

%,:Ie r,'

x(T) =1 sin s ,y(T) = .cos s.



The geometric interpretaLion Of (1320) i-; that the point x(1) , y ()

which lies on a trajectory terminmating Lit . (T), v(T) may be obtained by

rotating the point x () , y(T) throigi an angIe w I/N in thie negative

senst about the point x = R = 0 Wc recognize the example above

(B7) as the special case of (1320) wlhen = j ( s) /w.

LeL us see how the above geomCtric intllrpretaLon is useful in

sketching the transition surface. From (1312) we "CLC thalt a change in

steering occurs at diffCernt times for different tr~ij ectoric:;. We have

w
S

:=
0 " 1 2,.

'n /4 312

T /2 7;

By considering the geometric interpretation of (B20), we obtain the

picture shown below in which the transition surface is a dashed line.

Barrier 4 Barrier.b" 'm y;-+l !

N
• " .V /'4

\ \: /=-1
-S ' '

. ---_

' - -Transit ion

Surface

---

7



d. Cioml,.LIv L hlt , Soli t ion

11 Lhis SuCtion we sm alri Ze the results of analysis by drawing a

pic tirC of th'e optiiui,1 tujcctorics with the control, , eing indicated

in v.ar'ns rtions. iThe singtilar subarc, x = 0 , and pahs leading to

it (we hvvc not done this analysis) arc also given. This is shown in

Figure B. Again, the reason this "one-Eided" problem has been

:tudivd in such detail is tht it is the limiting case of the homicidal

chiauffeur game: whevn the vadr is immobile, i.e. , w 2

-A

-- x=0 A =+

' Bar r i er

A , "

... ... ... .. ... ... .. .... ... .. ........ . .. -
x I

I-Transition

Surface

Figure B2. Optimal Trajectories for Destroyer to Fixed Destination
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We should note that the above solution is in the relative coordinate

system. We discuss briefly how the. optimal paths look in a fixed coordi-

liate system. Such is shown below,wherc the point P is the movable point

and three destinations,

---A

eC

~A.

A, B, and C are shown. These points correspond to A, R, and C of

Figure B2. Point A is reached by turning as sharply as possible, = 1.

Point B is reached by turning sharply and then a straight-on approach. I
The last part is the singular subarc where , 0 . Point C is within

the minimum turning radius, R, and some maneuvering is required by P .

,:--

I
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A\IPEINDI1X C2

Ojzu N'I, IHOMICIDAL, CitAUFFLUR CAME

InI this ,pIoildix w., dciIvc parts of the solution to Isdacs ' IomiCidaL

chuf fc1 c U aIe [ 30]. W do so because of its close bimilaricy to the sur-

veiil ance-evasion galmy (svkc section 111 of main text).

Wc state the problem ond present details of its solution. Next, we

dis cuss our new geometrical construction for optima] trajectories in this

problem. 1inally, we discuss the geometry of the solution and summarize

the analysis results. A more detailed discussion of many solution steps

is to be found in Appendix B.

a. Statement of the I'tobl tm.

The problem is to determine how a Pursuer, who travels at a constant

speed w , with a minimum turning radius R , should stem: to capture

in minimum time T an Evader, who travels at constant speed w2 , has no

restriction on maneuverability, and tries to maximize the capture time T.

Capture conditions are defined by Pursuer and Evader being separated by a

distance Z. in a stationary coordinate system the problem is

T :

min max dt with T unspecified,

subject to; dx /dt w I cos a ,

dyl/dt = w I sin a.

da/di = 4 w i /R where -l < < 1

dx 2/dt = w2 cos

dY 2/dt = w2 sin



_. .

wiLh initial condj io,is

(t.O) =>:, y1 (t=O) = Y c(t=O) 0
00

x 2 (t-O) x 2  y,,(I1=0 = y.

and terminal conditions

2 2 2I
[x, (T) - x,(T)] + [Yi(T) - y2(M)]

We transform the above problem to the relative motion coordinate system of

Appendix A in the same fashion as shown there to obtain:

min max dt with "I unspecified ,
0

-,ubject to: dx/dt -w -W/R Y + w2 s ill'

1 2
dy/dt w /r xq; W 1 + wz 2Cos .where -i< <1 , (

with iuitial conditions

x(t--) = x0 , y(tO) =YO

and terminal condition
2( 2(T h

x (T) + y (T)

b. Develonment of Solution.

Ilamil tonian,_!. H( t. pL

w 1

H~tx~;¢,) 1+ pl (  y €+ W, sill¢

1

+p 2 ( -ix 4-W 1 + w2 cos (C2)

i
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v iiik' p k (t ) = Jx (t) .nd L,.(t) - bJ*/ bV (t) OrC dual variablcs aLd

,1 il~l a 1  It - ia.nin determine xLtrcal straLegics

from

ii r nia x I ( t 'X 'p ; 4, l , -0

+ w, 
!-

min R--p-t (ply - p2x)

It-

and mdx {w 2 (p1 s + co 4)1

tt e e 

l -

2i 1 + P c "

4 gn A MC ) 
(C3) i

where A(t) - pl y  - p .,- !

A n-cessary condition is that

df-/dy! 0 =p 1 eos y-p 2 Sinll

and hence

talk 4 = P

Pi P2

Thto maximize w e uspet have tsufcstocnierig-

sirn- .i P cos 1 2 (C4)

/-2--

/ P2 2P 1 P2p12 p 2
2 p



61

Boundarv Conditions for Dual Varfabl.4 j

WeL must have p = (p1 p2 ) parallel to the normal, n , pointing Into

the L.ate space to the terminal sut-f';m-co. NOW, _2

l sill s + cos s j , we have

PI(t - T) - sin s Pw(t ) cos s

Usable Part of Terminal Surface

We have that

n sin s i + cos S j ,

= -w. wI

, ,+-- Sill+w2 si + (-X - + w Cos)p
R2R 1 2

where the terminal surface is parametrically represented by s as shown

below. A
y

\S

-- 7

hence, we have

x(t = T) = k sin s and y(t = T) = c Los s.

Itence,

n = T) -- k cos s + w2 sin O)sin s

+ Z sin s - wI + w2 cos ,)cos
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and when We icct .t that6

Pl(t T

sin ,(r T) - yf sin s

/-2n-- -2
p) - T) =~

+ P2

we obtain

n - X(t - T) w - w Cos _ , (C6)

where We also assuT"e W2 - wI (otherwise capture is impossible unless the

Lvadvr is stupid). Ilence, the useable part of the terminal surfac_ is

given b%

Up is-S s < S where cos S = w2/w , 0 < S < -/2} (C7)

The Adjoint E'quations and Their Solution

We have that
W 1

dp /clt = - t/ = -P

w1
dp2 /dt = - M1/.y = p ,

To integrate backwards from time of capture, T , we let c = T -

to obtain

pp,/d P2 p, i P (T 0) sin s

w
dp,/di p p P2 (

= 0) = cos s
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We combine these equitions to obltin a second ordcr dilifcential equation

for n. as follows

d 2- o d) !. w , 2

or
d2 2 Wl 2

d P1 /di
2 + ( R 4.)2P = 0

The solution to the above equation 1s given by
wI w 1

pl(i) - A cos -I 4 1 + B s l - t ,

where the constants, A ond B are determined by

pi(I - 0) = A = sin s

w1 w I  w1
dpl/di(i = 0) = - B Cos s

or B = cos s

Hence, after some simplification, we obtain:

w
I1

pl0) = sin(s + -i- 4r) (C8)

Similarly, it may be shown that

w
p.2(1) = cos( + -L dT (C9)

Taking note of equation (C4), we also obtain

'1 wl
sin i sin(s + -- i) and cos p = cos(s + - . (C!o)



S0l ut illiL t .u% St ItL l iol

KY I 
U. ld ( ) - sin b

+- ) w 1 w 2 cosOs0) )CoS.

IVe comb i in thiose equalIons to deter-mine a second order differential equation

o 1 x 'Is follows

w 4 w I
d X/dl 2 1 d- -w pi)Cs(;

2 w
-W 2 -p4 os(s

2 /d 2 + ++ 2 (Cil)

with

dx/dt = 0) 1 o i

The general solution to the above inhomogeneous differential equation is

given by

x 11 x(j) + x 0)( ) (C12)

whe re



111 i I ic h gL' ,I Liu Iu uLiun ui thI.:- Ihomogen1U0ub Cqti iLI li

I CIS all~y jpaVt.iCU~U 61LutiOln to theIC h~fotvo eqUatioll.

'ihc gcni-ra1 so] ut I on ol t hc cqihg~c7 u.,iat Ion Is* h

w w

xi (i) A cos 1j ~ -4 B ,; i 4 (C13)

Wc usc the metho11d Of variation of pa rameci's (120] pp. 72-73) to

find I So)lutioll to Lthe inlioniogeiicous equation. (This Is p 1 re mcssy but

I have not feund 'In Casier W1Y. ) We ii two li n ry indep~endent So1l t.i

to the homogeneous equat ion.

u (1) =cos -- p

2 R

and determine v1 Ci) and v 2 (I ) Where- the parltiCUlar solutilol is aSSumed

to be of the form

x 1()- v I T)u 1 (1 + V 2 (1)U 2 0i C4

Hence

dxP dv 1du d v u.)
- U,' + V, + -- U. + V.

(it CII I L UI U L 4 I

Now we set

dv dv

dUI 1 -d 2 -:

leaving

dx d ~ do 2
-- V - + V

di 1 di d I



-I-

kv i DIU v d

-3- + V"

dV d u duv du- 
R 1  -)

J d d d . (V R , i dt 2 J

i~~c c i 111 u., 1 ) 1- aeSOILionS to the hoincgeneous equation,

2-1  d v d. dV du ,
+--' d : - - = R(i) , (C16)

ro 1<r ( E Is tht- riight hand side of (CII) and

lR 2u:r~, CS n ( s16 +V LR + (C17)

d+ d: = R(T)

d ~dv,
.0

di d2  d d

.I

di F

So summri e, (C5)hd (16 ivss w equations fbr Cramer' rueaefnd that ,J

dv 1  0 U R( u_(T)

+i W(J)--(.18)

IIdu du R
12

I di d T

Li U
:1 2'

I
dv 1  dr.

u, " + u

"- , a t .i"
I+

Sovn hs qain yLrmrsrlw idta
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Similarly, 
6

dv 2  R(t)u 1 (C) (.19)
d ( wi

Substituting (C17) and the definitions of uI  and u2  into the above,

we find that

dv I  wI  w
d1 1, 1
di = 2 sin(s + 2 -- 4T) - 2 sin s - wI sin

and

dv2  wI w
d 2 =-W cos s - w cos(s + 2 - I)1) + W cos - pr.
dT 2 2 K1 R

Integration of these equations yields

w 2R Wl R w-1
V(T = 2w(T cos(s + 2 -- i) - iw2 sin s + 7cos -

(C20)
and

adw 2 R Wi R w

vj(T) -TW 2 CO S 2wi sin(s + 2 - T ) + 7 sin - T.

(C21)

Substituting (C20) and (C21) and the definitions of uI  and u2  into

(C14), we obtain after some manipulation

w2R w, Wl R
xp(r) = - -- cos (s + - 1) - 1w2 sin(s + -- 4T) + -- (C22)

p 2w 1  R2R

Combining (C13) and (C22), we see that the general solution to (C11) is

given by
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w.w, w2R w
x(i) = A cos K i 4 B sin R i R cos(s +-

;w 1 in(+ L (C23)

The initial conditions to (CGi) lead to the following determination of

the constants in (C23):

w2R

ArZsin s + cosS

w2R

B = icos s -2 sin s (C24)
2w ?

Substituting (C24) into (C23), we obtain after some: manipulation,

Wl1 R W Ia
x ( - w2)sin(s + -R- T) + T (1 - cos -R 4T). (C25)

Similarly, we may also obtain

y(r) C( - iw)cos(s + s- nr) + - - (C26)
2 R

Note that the above equations (and also (C8), (C9), and (CIO)) hold from

the terminal surface Ct - 0) until a transition surface is reached or

the trajectory terminates.

Equation of the Barrier

We have seen (see Appendix B) that the barrier (boundary of the domain

of controllability) is an optimal trajectory which terminates at the BUP.

We have seen in (C) above that the boundary of the usele part (BUP) is

given by s = +S , where 0 < S < r/2 and

cos S - w2/w I (C27)
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Because of the symmetry about the y-axis in this problem it suffices to

consider the right barrier, i.e., the one for which s - S . In the next

section we show that ,(1) = 1 for s = S and 0 r i < 11 where 1] is

also determined. Thus, the equation of the right barrier is given by

for 0 < i<T

X(i) (, - 1w )sin(S + W + (( - Cos 1 - 1 (C28)

and
WiwwI  w I

y(1) = (i - w2)cos(S + -- ) + R sin - . (C29)

It is not obvious (as Isaacs and others seem to infer) that (C28) and

(C29) are the equations for the involute to a circle. It, therefore,

seems appropriate to digress and review some analytic geometry. Our dis-

cussion follows R. Courant ([12] pp. 280-283 and pp. 307-310).

Consider a curve represented parametrically by x = x(t) , y = y(t)

in the plane. The curvature, K , of this curve at a point is given by

K = dal/ds , where tan a = = (dy/dt)/(dx/dt) . The radius of curvature

is defined by - 1/ . For a given point on the curve, there is a

circle of curvature corresponding to the point. This circle touches he

curve at the point and there has the same sense of description and the same

curvature as the curve. Its center is called the center of curvature. Con-

sider the diagram below. At any point (x,y) , the center of curvature,

( ,n) , is given by



70

4 x - sin a~,

fly + p 0

where
gent sin ,. =

(xTy + y

The locus of such centers of curvature to a curve is called the evolute

of the curve, C We further call C the involute of its evolute. The

evolute is the "envelope" of the normals to C . An important fact that

we shall use later is that the. tangent to the evolute of a curve is normal

to the curve, i.e., 4 x + y 0

If we have a curve 4 =(a) , n = n(o) where a is parameter, then

the equations of the involute to this curve are given by

4+ (a -)

y n + (a o);

For a circle, represented parametrically by

S--cos t

(C30)
Dl sin t

the involute is given by

x = -cos t - t sin t,
(C31)

y = sin t - t cos t .

It is worth noting that all the normals to the curve given by (C31) are

tangent to the circle (C30). We show the curves below. Another geometric
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property of involutes that we shall usc iG that: let,

distance from A to B

k 2 = arc length from B to D

Ak =  disLatice from C to D,

13 3

where

1) AB and CD are normals to involute.

Then
91 + z3 (C32)

To show that (C28) and (C29) are the involute to a circle, we must

show that they are of the form (C31). To do this we consider

wl w1
R cos R-T = R cos (- i + S - S)

co ~1  w 1
- R cos (-- T + S)cos S + R sin(- T + S) sin S

R R

Considering (C27), we see that

W, w 2  I w

co- T R 2Cos o S) + -W - w sin(- t + S).
K 1  12R

Thus, (C28) becomes

w 2  wl R 12 w2 Wx(T) -R - (R -)Cos (- T  + S) + [- - ] (R ) ,
w1 R w 1  1 1 R

w
sin ( T + S) .(C33)

R

Similarly,
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W, wI  2 2 w2 w.) sin ( - W.8 01,

WK wWI R

Cos - + 5). (C34)

Considering (C30) and (Z31), it is clear that (C33) and (C34) are the

equations of an involute to a circle oi radius R(w 2 /w 1) and wiLh cenLer

x = R , y = 0 The equations of this circle are

- R = - (Rw ) cos (-- r + S)

= (RI ) sin (-- + S)

where the involute is unwound from

wi wl 2 2Rl _W _ w 1 2R = wR L[. W W - '2 ]

y2

t (R,0) * x

1,~,

'Ai

\I
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To tsure that the involute i. unwound under all circumstances, we must

show that the quantity in brackets above is always negative. This follows

from elementary geometry considerations In the ibove f igure.

w

k2 + (R ) 2 R2

or

S- wR 1- w2w 0 jor all values,
Wiw 1 2 o

Transition Surfaces

We recall that

(i)= sgn A(i) (C3)

where A(T) = ply - P2x

Recalling that

X(= 0) = k sin s , y( 0) = k cos s,

and pl( - 0) = sin s , (T = 0) = cos s

we see that

A(T -0) -0 (C35)

Also,
dA/d dpl dy d P2 dx= ddi y  +  Pl d i d i '2 P2

into which we substitute the state and adjoint equations to obtain

wi
dA/dT - PlW 1 = w1 sin(s + - 0) with A(T = 0) 0

Integration of the above yields

A(i) = cos s cos(s + - ) (C36)
R
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TIhus, tot 0 -t i i (whIn:yv 11 will be deLermined presenLly),

-1 f0r -S s 0r
y.(i) ,.- (C37)

t 41 lor 0 s SC,

where S is determined by (C27). by the symmetry of the problem, we

concentrate on the right half-plane. Consequently, for 0 < s L S , we

deer-ine l as follows: iL is the first time that A(i) - 0 after

= 0 . This happens when

w1

cos s = cos(s + W T)

which is precisely when

RI

hence, for 0 < s S < 7/2 , we have

(72R _ ) (C38)

1w 1

Equation (C38) determines T 1  such that (T) 1 for 0 < T < T

For T > 1 . we show later that A(i) < 0 and hence *(T) = -1. If

trajectories do not terminate before condition (C32) holds thea t latter

givei a transition surface.

For s = S , whece cos S - w 2/w, , we have the barrier and hence

p(t) = I on this "right barrier" for 0 < < - 2R/wj(T - S). From (C28)

and (C29), we may write the equations of the barrier

X(T) - R - Ct - )w2cos S sin -I + f( - rw )sin S - R} cos - T,
2 2

wl wI

y(t) = -U( - tw2 )sin S - R) sin -- r + (k - zw2 )cos S cos

2 R 2
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which we may write as

W W

x()cos sin - (£ - w )sin S - R
' -I( C39)

y~r)w 1  w1
Y (T) \-sin -- 1 Cos- \( Iw2 ) Cos S

The geometric interpretation of (C39) is as follows. To determine a point

on the barrier at timc i < (2R/w )(r - S) , we start at the point x - 9sin S,

y - kcos S on the terminal surface (this is the BUP) and move to a point

which is a distance iw2 along the straight line connecting the first point

to the origin ( and toward the origin). We now rotate this latter point

through an angle (w /R)i in the negative (clockwise) sense about the

point x - R , y - 0 . Hence for 0 < (w /R)i 2 - 2S , the barrier

traces out the curve shown below in Figure C1.

A

V

(R, x

Figure Cl. Barrier in omicidal Chauffeur Game.
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(,it 11nu.1t i,' el ,,iut ion lPInt J''.i1n1It ion Sul ace and 'criiiinatliOn ot Barrier

Latc 1WL bhow thit piths termItnitLg on tcrlmlil surface for 0 .s

m,y all cOnvec,, t to 01 ie acit' point and hen e termin.'Ite there (except for the

, I cI ) 1he ti 0 t tli - ',vc'V, n,-c deponds on the' speed of the Evader,

W WC rTecall t tIt In the, I l t aS w,, 'O the sOlutLon approaches that

shown ill Figure B2. If w, is small enough, thle transition surface beyond

thc erraint, ion of the barrivr may be reached by a trajectory befoie the

trajcctory terminites b- reaching tho "focal point ." tience, we consider

exte sion of the barrier which we know continues until I Details fur

other trajectories (if they exist long enough) are si-4lar.

'I'hi,,; we cons1d,r the conLitnuation of the right barrier past

(wI/R)t 1 - 2' -S) From (C8) and (C9), we have

pl(I -sin S , p 2 (i) cos S . (C40)

From (C25) and (C26), we obtain

x( = ( - ilw 2 )(-sin S) + R( - cos 2S),
(C41)

y( = ( - ylw )cos S - R sin 2S .

Later, we show that 4(T) - - f jor i > -i We assume this for now. The

adjoint equations for t > i are

dp w

P2 -R- P(r) -sin S

dPp ws-- = PP -i"2 ( T1  = Cos S

dT~ ='



VIhC solution to thl. aboVe equatLions is (t or 1 )

w1

p( -sl(S + - sin

(C42)

Te state equations for - > %re

dx/di I - iIS4dx/,t " " 2 sin(S + ]-(1 - ~),.

(C43)
'4 wI -

dy/ l = " x + W ,- C2  o S I 1.-t)

with initial conditions given by (.'541). A rather laborious computation .. } [

(we omit the details) yields the solution to, the above as (for T -t 1i) ':: .. -"

x(O) T= - ( - )s~n(S + -- I l )".,-
witW

I+ R{2 sin I - ) ' I -cos(2S + A I ]) " ,

and

Y(T) ( -, w 2)CD(S + _ -_i)) ,

+ K{2 sin -T T sin(2.S + - (. (C44)

We may write equations (C44) as (for i > 1-l)" )'-'2

wI
X(T) + R C IS -- -I (T I -sin - TIT I -tS)+2R-Rcs2S

RR A

,, (i - -)*' ; '
WlT V1" Rl 'w

y(r) / si ( - - (t r/ - Tw2 )ceS-Rsin(2S I

Ic45

L!
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,,: L IiiI . II(/

\C y(.\in -S) + R.v~)'v - -. )lQ 5

2 1"- 1 2

(CO)

The mo.st import.int ,n pct,- of the geometric interpretation of (c46) are

that -,rat ion is in the positivt, sens, about the point x = -R , y 0

tad lit, J.Iiite cont i.o.s to uitwInd, That (C44) does indeed trace out

an in:olute may be seen by wrLing it in the equivalent form

4(.) +h= R cos(S + (-1 )),' - :WI -R- 1

+[{3R/ - (w.iw.t - Z. + (R - )(,l )lsin(S + (- T
w RR 1* 1

w) w w,(.,=[-{3i<,I - (w2 /w)" - V.'. - (K w3 ) : i )csS+. ,-,
31 1 ( / )]coS(S + C.-1r)

.1 R R I

W . 1::

+ "-' 1sin(S + i T)) (C47)

which is an involute to a circle of radius R(w /w ) and with center A
2 1

x = 1x y = 0 The involute is unwound from

S -3R/ ,W + 2 <0

If we were to try to etLend the barrier given by ((44) (or any equivalent

ferm), we would find that the barrier "bends back. on self" as shown by

,he dashed line in Figure Ci. Hence, by tha arguments given in Appendix B,

tle barrier must trmiina'.,t at ; = ('111w]) ( 
'-

I!
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We also note that if the barrier weft extended for t > ii , then

the tange, nt tu this curve would be discontinuous. We denote

dxI
dt =II+  as being the limit as I ] an i .i . Similarly for

- We may show that for the barrier we have
dt 1=11

dt w (sin S - (R - 11w )/R}cos S ,
11 2

dyL - = w [sin S - (k - lW)/R}sin S ,

dtT= 1  1 1

and hence (as we knew before)

A= tan S

Also

dx + = -w (3 sin S - (Z - i w,)/R)cos S

and

dt T=-I+ 1 dtII=Ti

Hence if T1W2 > t (causing "focal point" in field of trajectories, i.e.,
the

all paths exceptbarrier terminate before T = i ) both dx/dt and
The

dy/dt change sign at I = T, . jcurve would "almost have cusp" at 'I if the
11

barrier were extended (except for dy/dx being discontinuous).
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Thc Singular SoIltion (UL iirersal Surface)

Since the Hamiltonian is a linear function of the Pursuer's ctrol

variable , the maxbium principle does not determine the control when

thv coeflicient of vanishes for a finite interval of time (see Appendix

1). Part of a trajectory for which this occurs is called a singular aubarc.

The Hlamiltonian is

l1(t ,x,p; .,y) = -- (p 2 x - ply) + w2 (p sin +P 2 cos ) + -

or using (C4), we have

Wl (C48

(t ,x,p;4,,) = V-- (P 2 x - ply) + w2/7 + P2 ' + 1 - P 2wl (C48)

We determine the conditions for a singular subarc from

H = M/H = (d/dt)(H/Dp) = 0 (C49)

Recalling that above equation (C36) we had dA/dt = -w 1p and noting that

31-/4 - (-wl/R)(A(t)) , we havo from (C49) the following conditions for

the singular surface

2 2
w2 i +P2 + 1 -P2wl 0

w

R (p - p y) = 0

2
w1

lR

and hence

Pl(t) = 0

1

P2(t) = W w > 0 , (C50)

1 2

X(t) = 0
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The singular control required to yield the above is readily seen to be

4(t) - 0 . Hence recalling (C4), I.e., sin T = pl(L)/ 2 + P2

we see that 4,(t) = 0 on the singular subarc. We have not traced paths

which lead to x(t) = 0 backwards as Isaacs has done ([30] pp. 193 - 194).

The necessary condition for optimaliLy [34] on the singular subarc is also

met since 2
d2

D3 dt 2 f_! { Cdt )} -(W1IR)2 0 .

Determination of Capture Criterion

We have discussed in section tlIb of the main text that a very impor-

tant question is whether or not the barrier divides the state space into

two parts. For the problem at hand, if the barrier does not divide the

state space into two parts, then (it appears as though) capture can occur

from any initial point, i.e., the entire state space is the capture zone.

The only way that the barrier can divide the state space into two parts is

for the "left" and "right" barriers to meet in the y-axis. We now develop

the condition for this to occur.

We consider Figure C2 and recall the relationship between two normals

to the involute of a circle given by (C32). When capture can be avoided,

the barrier intersects the y-axis. In Figure C2, we have

£ + Z (C51)
1 2 3

i.e. the difference in the length of the normals is equal to the distance

on the perimeter of the circle (evolute) between points of tangency.

For capture to always occur. i.e., barrier does not intersect or touch

y-axis, we must have

R > £. (C52)

LL!
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4 s

Figure C2. Determination of Capture Criterion,
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We also have

sin S = £4/R = (Y + i,)/R J
'4

or

R2 = R sin S - (C53)

and

an = R(w2 /w1 )( 2 - S) , (C54)

Now, since ( S Z 3W/(Rw2),we have (also using (c27))

sin(i3w1 /(Rw 2 ))=cos S - w2 /wI ,

and hence

£3 - R(w2 /wl) sin- (w2 /w1 ) (C55)

Combining (C51), (C52), (C53), and (C55), we obtain the condition for the

entire state space to be the capture zone

2 > R{M - (w2/wQ
2  + (w2/wI ) sin-

1 (w2 /w) - 1 (C56)

c. The New Geometrical Construction for Optimal Trajectories.

We consider optimal trajectories in the right half-plane fot

0 < T < T. = 2R/wl(P - s) . Background material is to be found in Appendix

B. For 0< T< T . we have that *(T) = 1 for 0 < s < S , and (C25)

and (C26) may be written as

x(T) - R = (Z - iw )cos s sin 1 T + {(R - w2)sin s - Rcos -r

2 R 2I

and

Y([) - -{(z - w2)siln s - R~sin 2 + -Tw2)Cos cos w 1 (C57)
2R 2 +R£T hs ~ c7

:.
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whIch we may writ, as

for 0 -s S where cos S w2 /w1  and 0 1

12 1

Cos T sin I I £ - 1w2)sin s - R
(xr-R = R R 2

wI  w I

Y(I) -sin - ( - Tw2 )cos s (C58)

The geometric interpretation of (C58) is as follows. To determine a point

on an optimal trajectory at time i t min(£/w 2, 2R/w1 (7 - s)) (we presently

shall show why addition restriction; see above near (C39) for case of barrier),

we start at the point x - Z sin s , y - k cos s where s c UP and move

to a second point which is a distance iw2 towards the origin along the

straight line connecting the first point to the origin. We now rotate this

second poinL through an angle (l/R) in the negative (clockwise) sense *

about the point x R , y = 0

We have used the above geometric interpretation (C58) to discover in

the homicidal chauffeur game a central field of extremals through a point

on the barrier corresponding to T = k1w2. All "primary solution" extremals

(see [30] p. 278) pass through this same point. For 0 < -r < Y/w2 , we

suspect that on any primary trajectory there is no point conjugate to 1 = 0,

but we cannot check this by the Jacobi condition, since the strengthened

Legendre-Clebsch condition is not satisfied, i.e., H 0 (see [9] p. 181,
UU

also [44] p. 398). The significance of a conjugate point is that the

primary solution terminates at this locus of focal points to the UP of the

terminal surface.

We can, however, investigate the existence of conjugate points by the

use of our geometrical construction (C58). Another way of looking at the

I I I I I I I I I I I I I I II
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conjugate point condition is that P1 ,P2 c UP and P1 0 P2 yield the same

point on an extremal trajectory, i.e., adjacent extremals intersect. By

consideration of the geometric interpretation of (C58) it is clear that for

P and P to yield the same point on an extremal:
1 p2

(1) they must lie on the same circle with center x = R, y - 0 ,

(2) it must be possible to obtain P1  from P2  by an appropriate

rotation about x = R, y = 0 given by

I  w
ja - T w2)sin s - R\ !Cos ! (-2-1 I)  sin - I (2i) , w)sin s- R

1-i1R R 2 1 2 2 2
1.

t w2 )Cos s sin -j- (T2-I) Cos - ( ) a( 2w 2 )Cos s2

(c59)

where T- i > 0 causes a rotation in the negative sense. From (C59) it

is clearly sufficient that Ti = T2 i /w 2 . Also ii xI =1.2 then it is

necessary that T1 = £w 2 . This is easily seen by considering (C59) for

1, = T2 It reduces to

(k - Tlw 2)sin sI - R = (Z - T2w 2)sin s2 -R

and

Ci - rlw2)Cos sI = - t2 w2)cos s2

Hence if sI  s2 , we must have TlW2 = T2w2 = i Since this is also

sufficient, it suffices to consider T E {'I - tw2 > 0) . Although in

further research we have not been able to prove or disprove intersection of

adjacent extremals for t < Z/w2 , we have shown the following:

(a) for P1 and P2 c UP to yield the same point on an extremal

for i-- Z/w it is necessary that T =T
21 2
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and (b) for P and P 2 UI' and such that 0 -. s < S Lu yie1d

the same point on an eCxremal, we must have i > 2

To prove (a) we proceed as follows. For P and P2 to lie on the

same circlv, by (C59) we must have

2 2

[([ - lWsin s - R + - 2rW))Cosss] I

[(2 - 2 w 2)sin s 2 - R]2 + [ - t 2w2 )cos s2

which yields th IliUwing quadratic equation for w2

w -2 22 - 2 (w 2 - Rw 2 sin s 2 } - [2RE(sin s2 - sin s 1 )

21 1 (w2 - Rw2 sin s + w 2212 0

whose solution is given by

W2T2 (I - Rsin s2 )± (w2T1  + Rsin s + 2R(sin s2 - sin s )(Z W2

Noting that when sI - s2 we must have tI t 2 T we see that the minus

sign is extraneous and hence

W T, = (I - Rsin s2 ) + /(w 2 T1 - 1 + Rsin s2) + 2R(sin s2 - sin sM)( - T w)

(c60)

Assertion (a) follows from letting *i = in (C60)

To prove (b) for k - Tw2 > 0 , we note that for 0 < s < s i< 7/2

we have sin s2 sin s 1 Hence using (C60) we see that

w 2 - 1 + R sin s 2 w2'1 - R + R sin s2

o1 > T2 (C61)
or1 2
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,I

As stated above, we suspect that adjacent extremals do not intersect

for i 9w 2 , but we have not been able to provw this. We have shown that

all extremals which terminate on terminal surface for 0 % s < S pass

through t1le same point at i - k/w 2  Hence, all such trajectories (except

the barrier s - S ) terminate at this point.

d. Geometry ofthe Solution.

In this section we summarize the results of analysis by drawing a

picture of the optimal trajectories with the control, , being indicated

in various regions. The singular subarc, x - 0 , and part of the paths

leading to it (we have not done this analysis) are also given. As noted above

the entire state space may or may not be the capture region. From (C56),

we let

= R{VI - (w2/wI)
2 + (w2 /wl)sin-

1 (w2 /w) -1I . (c62)

Then there are two cases to consider

(1) Q _ * barrier meets negative y-axis

(2) k > t* entire state space is capture zone.

In case (1) the Pursuer can only achieve capture for a small portion

of the state space if the Evader plays properly. This is shown in Figure

C2, in which only the right barrier is shown.

In case (2) the entire state space is the capture zone. Optimal tra-

jectories for this case are shown in Figure 3. There are two further cases.

For Z/w2 < 2R(m - S)/w I , paths terminating on UP for 0 < s < S all con-

verge to point A at T - 2/w 2. This is the case shown in Figure 3. When

91w2 > 2R(r S)/w 1 , such trajectories meet past point B at the end of the

barrier, and there is a transition surface between this point and B. As

w 2 - 0 , the trajectories approach those shown in Figure B2.
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yI
- -- ~Barrier

AI

Lip-. - -- ~
2T,-s

(-R, 0)

Figure C3. Part of Optimal Trajectories for Homicidal Chauffeur Game.
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APPENLIX 1). SURVEILLANCE-EVASIN (AME.

In this appendix we derive parts ot the z.iuti.:, to the surveil-

lance-evasion game given by eqatLion (1) oi thu main text. First we

present details of its solution. Next, we discuss our new geometrical

construction for optima. trajec.ories in thin problem. Finally, we

discuss aspects of the geometry cf the solution and summarize analyais

results not given in the aain text. A more detailed discussion of many

solution steps is to be found in Appendix B. (or Appendix C if they

occur there).

a. Development of S,3lution.

Hamiltonian Xt ;Lp.,_-

The hamiltonian for the problem given by equation (1) ot the

main text is giveil by

(t,x,p;, 0 + p ( R Y t s2  sin 2) x s1 + s2  cos (Dl)

wher(.. j'l.t )  ox a1, , 2 (t) = av (t) are the dual variables and

T T

J max m in dt min max dt. We determine extremal strategies
Sl,¢ s 2, ( ,'2,' Sl, 00

from

max min H(t,x,p;O,)
Sil s 2 ,1p

max {s~1 4(-ply + p2 x)-p 2 ]}, (D2)

and

mi {s2(Pl sin P+ p2 cos i)}. (D3)
S 2
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tii C Ica r trIul 0D2) ( iinc2 L 0) that b i!; given by

so ) n A (t,

wht' re

A(t) =-p v + p 2x (NlL)

The derermination vcf s I is more complicated, and we have to use

resuivu to be established later in this appendix. We parametrically

represent the termiinal surface! by u as;, shown in Figure DI below.

Y

n
U -

Figure Dl. Terminal Surface for Surveillance-evasion Game.
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Later we will show 
that (where T -T - t)

R S
A(i) - {cos u - cos(u + - )}, (D))

and s

p 2 () = -cos(u + - '(D6)

Substituting the above into (02), we obtain

max {sl [ A(T) - p 2 (T)]l

sil 1

= max{s 1 cos u}, (D7)
sI

and thus we see that (where u refers to termination conditions)

w i  for - <u<
s Mt =

s "(t)for I < u < 3 (D8)

2 2

Next, we consider (D3). To minimize with respect to p it

suffices to consider

f(p) P1 sin 0 + p2 cos y

A necessary condition is that

df =0 = p1 cos - p2 sin q,

and hence

tan 4) pl/p2

Thus, to minimize f(p) we must have

sin - , cos -.. (D9)

V Z + pp- 2 + P
I~ 'P'
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with the minimum value being

min () = -,/ +p) <, 0 U

which implies that (D3) is given by

min sj(0) - min {-s 2  -
2 1 2'

and, hence, we see that

s2 (t) = w 2. (DI0)

Boundary Conditions for Dual Variables

We must have pkt = T) = (pl(T) p2 (T)) parallel to the normal,

n, pointing into the state space to the terminal surface (see Figure

Dl). Now, since n = -sin u i - cos u j, we have

pi(t = T) = -sin u, P2 (t - T) - -cos u. (DlI)

Useable Part of Terminal Surface

We have that

n = -sin uT - cos u,

( + s2 sin 01 + (-- x - s1 + s2 Cos

where the terminal surface is parametrically represented by u as

shown in Figure DI above. Hence, we have

x(t = T) = d sin u and y(t = T) = d cos u.

Hence,
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'n. (t T) (- O-q cob u + 8 ill p) (-siln u)
R 2I

+ (j- pd sin u - s I + s2 cos q)(-cos u),

and when we recall (see (D9)) that

-pl(t-T)

sin p(t = T) - ) in u

1 2

-p2 (t-T)
cos iP(t = T) - =cos U

we obtain from n X(t = T) . 0 that
+

n X(t = T) - -s 2 + s cos u :r 0. (DI2)

2 3
Recalling (DS) and (D10), we see that for - < u < - 1 (D12) is

identically satisfied. For - -j < u < 7 we have

-w 2 + w1 cos u S 0,

where we also assume w2 < w1  (otherwise the Evader can always escape

merely by "outrunning" his pursuer). Hence, the useable part of the

terminal surface is given by

UP - {ulh g u : 2z - I where cos U w 2/w, 0 U r r/2}. (D3)

We note that this is the complement of the UP in the homicidal

chauffer game (see (C7) in Appendix C).
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TI, Adj.t Euation, and Their Solution

We have that

dpl H Sl

- - _ax -P
dP2 2 Sl

dp 2  M _ 1

dt y Pi R

To integrate backwards from time of escape, T, we introduce the

"backwards time" variable T defined by t T - t and obtain

dp1  s
di = P - P(T = 0) -sin u,

P 2  T s I

dp 2  1
d- -P l --- P2 (1 0) cos U.

We combine these equations to obtain a second order differential

equation for p1  as follows

d 2p dP 2 :
- d. R '€  = "PI(R € ) '',

or

d2pI  2
+ (R-+ *) p1 = 0.

The solution to the above equation is given by

pl(T)= A cos -v + B sin

i

I



95

where the constants, A and B, are determined by 9

pI(r = 0) = A = -sin u U
d-pl(t - 0) - = op 2 (r - 0) - - "-- cos u

or B = --cos u.

Hence, after some manipulation, we obtain

s1
pl(T) = -sin(u + - 0T). (D14)

Similarly, it may be shown that

Si
p2 () -cos(u + j- *t). (D15)

Taking note of equation (D9), we also obtain

sin ip = sin(u + -- r) and cos p cos(u + 4- OT). (D16)

Taking account of (D8), we obtain from the above (where u refers to

angle at which escape occurs, see Figure DI)

iWT

for )A ,g u < - and - n< ii g 2r - 'A where cos U =
2 2

and 0 r I :g Tr
2

p -sin(u + W, ) , p2 (r) = -cos(u + T) (D17)

and

sin P = sin(u + 1 OT) , cos t cos(u + -- ) 0(1)R R
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and for 2 u 3
2 2

plj) - -sin u , p 2 (T) - -cos u, (D19)

and

sin ' - sin u , cos -- cos u. (D20)

Solution to the State Equations

In the "backwards time" we have

dx S Si

dr R y - sin(u + -0) x(r - 0) - d sin u,

81 1os1
AX - - Ox + s I - s 2 cos(u - T) y(T - 0) - d cos u.

- R +lE R ) c2

The above equations have the same form as the state equations for the

homicidal chauffer problem (see Appendix C). Hence, their solution is

g iven by

x(T) - (d - rs2)sin(u +- O) + (l - "I (D21)2 R t)- R

and

y(T) ( (d - Ts 2 )coa(u + OT) + sin OT. (D22)

Taking account of (D8), we obtain from the above (where u refers to

angle at which escape occurs, see Figure Dl)

for U :ru <- and -in <ue.21t-U where cosU- V2
2 w

and 0 h c
2

X() (d - Tw2)sin(u + - OT) + -(l - cos -r), (D23)

and

y(O - (d - rw2 )cos(u + R- O) + sin - € , (D24)
2 R RI
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2 2and for -< U <

x(a) = (d - tw 2 )sin u , y(T) = (d - iw2 )cos u. (D25)

We note that equations (D23) and (D24) (and also (D17) and (D18))

hold from the terminal surface (T = 0) until a transition surface is

reached or the trajectory terminates.

Equation of the Barrier

From the symmetry of problem, we consider the right barrier,

which terminates on the terminal surface with u U, where 0 s U < -2

and

cos U = w 2/w. (D26)

For u =I and 0 K T : TV we have 4(T) = 1 (we show this in the

next section) and the barrier is given by

for 0 c : T

w I  w 1
x() = (d - Tw)sin(U + T-- r) + R(U - cos - ), (D27)

and
w I  w 1

y(T) = (d - rw 2 )cos(U + T ) + R sin - (D28)

We now consider

w I  w I

R cos T = R cos I + A- U)
R R

,w w]R cos C--- T +U )cos U + R sin (-T + U) sin U

R

Using the above and (D26), we obtain
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W1 w2 W 1 R 1 I
R cos R - cs - R -. +U -- W -1 W- sin (-: T r )

which we combine with (27) to obtain
w ww 2 w I  w Iw2 1 1 1 (D29)

x(r)-R - -R - cos(- + )+{[d - W l 2 7  ]-(R 2 1 R -sin--+U

Similarly

w2  wI  R 1 W2l w
yO)= 2(R 1(R W)w- }cos( 1-+A). (D30)

w I R +u+L 1 l2]' wR R

Recalling (C30) and (C31), we see that the above are the equations of

an involute to a circle of radius R w /w and with center x - R,y - 0.
2 1

We note that the involute winds in for

d - R /i -(w,/w -  w 2 T Z 0 (D31)
2 1 2

Transition Surfaces

We recall that

O(r) = sgn A(), (D4)

where A(T) - -pIy + p2 X

Recalling that

x(T = 0) = d sin u , y(O = 0) = d cos u,

and pl ( 0) -sin u , 2(T = 0) = -cos u,

we see that

A(T 0 ) = 0. (D32)

Also,

dA dp Iy +dP dx

dr dT - P1 + 2 d 
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into which ve substitute the state and adjoint equations to obtain

d- " -P S sin(u + R fi) with A( = 0) - 0.

Integration of the above yields

AO) Rcos u - cos(u + *T ) }. (D33)
* R

Recalling (D8) and noting that for the escape paths terminating with

ii3
< u < 3- I the Pursuer uses sl(t) - 0, we see that in this range

there ts no transition surface since A(T) E 0 for all time. Hence,

we consider only paths for which there is a transition surface, i.e.,
3

u < and 3 w < u g 2v - U. In this range of u by (D8) we have

s= w1  and (D33) becomes

A(r) = c {Cos u - cos(u + R-M) (D34)

Thus, for 0 fs T s T1  (where we determine t1  below),

+1 for h =u < Tr

() -1 :: :::1::::-2 -L (D35)
2

where U is given by (D26). By the symmetry of the problem we concen-

trate on the right half-plane. Consequently, for 1U s u < 2' we

determine T as follows: it is the first time that A(T) = 0 after

T - 0. This happens when

w 1

which is precisely when

2 - u = u + j- T1 .
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Hence for U u < - we" have

-2R - u). (D36)W I

IL appears as though all trajectories except the barrier (u - 14)

terminate before this time, however, because of intersection of

adjacent extremals. Hence, equation (036) becomes

2R
I ZRW-l  (TT - 1A), (D37)
1 w1

where 1A is given by (D26). For i > TV we show later that A(T) < 0

and hence f() - -1. We finally note that (D37) holds only if the

barrier doesn't terminate before this time is reached.

Termination of the Barrier

A fundamental difference between tile homicidal chauffer game

and the surveillance-evasion game is that in the latter the barrier may

terminate abruptly before the trangirlon given by (D37) occurs. We

recall (see Appendix C) that in the homicidal chauffer game the barrier

terminated when $(T) changed from +1 to -1. In the surveillance-

evasion game we shall see that for

d I R {/i- (w 2/w I + 2(w2 /w1X -) (D38)

the barrier terminates at

2 = (d - R sin 1)/w 2 . (D39)

We have investigated many aspects of this phenomena and will detail our

findings here.
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What led us to our findings was a statement by Dobbie [14] which

we found to be incorrect. Let us consider Figure 5 of the main text.

Dolbie ([141 p. 176) states that the (right) barrier can be tangent to

the line through 0 and D' (if d is small enough). This was found

to be incorrect. Let vi be a unit vector parallel to line connecting

0 and D' and v2  tobeaunit vector orthogonal to v1 . Thus

V. = sin I - cos U

V 2 " cos Ui + sin UJ. (D40)

We show below that there is a transition from J 1 to i = -1, i.e,.

A(T) changes from positive to negative, at T = 2R(n - U)/w Now
1

we will show that we always have

( T=I 1• V1 = 0, (D41)

i.e., the tangent to the barrier is orthogonal to the line througn 0

and D' at T = T Also, d I  V2 = 0 only for d - TiW 2 = R sin IA,

when we have that 0. Hence the barrier can never be tangent to

this line. We should note that for T = T our new geometric construc-

tion (discussed below) shows that the point (X(T 1 ),Y(tI)) of the

barrier always lies on the line through 0 and D' (if we ignore

termination).

To prove (D41) we consider (1) of the main text at T1 = 2R/wl(n - I)

dT=T =--- (d - rlW2)cos I - wI sin 2 IA + w2sin U,

and

= R (d - rlw2)sin U + w1 cos 2 U - w2cos U, (D42)



102 1

where we have also u-ed (D27) and (D28), Now

dId
1-- " v d] 31 in t - dTJ Cos U

which use of (D42) and some manipulation shows to be equal to w 2I
-W cos U - 0, and hence (D41) is proved.

The second statement we prove similarly I

• . A" ; .v
- C , os + sinA

.. .. 2 + OR ]

" :;.,aV ,: I. {-- - ,. -R sin IA}, (D43)I'I
(T) T r 2 R 1 2

44

where we have used (D42) and ;3lmplifled. Thus, dVl • 2IdAT TIT1  2

for , -T 1W2 R sin . If we substitute this latter condition into

(D42) we find that -

, ,- = S 1wCos + w}

and

[4y .=cos {w cos 1A -w 0.

Let ,.s now discuss how when fD38) holds the barrier has a cusp

I T given by (1)39). We obtained several clues by considering

our new geometric interpretation of the solution to the state equations,

wiitch we nm di:cuus. The eqiiattons of the barrier (D27) and (D28) may

be writren as
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w I  
w 1

x(r)- R ( (d - Tw 2 )cos U sin r T + {(D - Tw 2 )sinu - R}cos R-r'

and

y(t) = -((d - Tw2 )sin 1 - Risin i] T + (d - -w2)cos I cos a-

which we may write as

for 0r T ! ST 1

w1  W1
x(T)- R cc T sin ' (d - sw2 sin U A R

y(r) -sin R T cos R TJ (d -- Tw2)cos h (D44)

Let us consider Figure 5 of the main text. To determine a point on the

right barrier at time T ! 2R/w (11 -U), we start at point A at the

boundary of the detection region and move to a point which is a distance

Tw 2 away from A along the straight liae OA. We now rotate this
w 1

point through an angle - r in the negative (clockwise) sense about

the point x = R,y = 0.

Some further remarks seem appropriate. When T = rI we rotate

through an angle 27 - 21A in the negative sense or an angle of 2U

in the positive sense. Hence, any point on the straight line through

0 and A is carried to the line through 0 and D'. Hence, our remark

about a point of the barrier being on OD' at T = rI . We also see

the suggestion of anomalous behavior if the point moving along OA

passes the point of tangency to the circle of radius Rw /w and center
2 1

x = R,y = 0. If this occurs the geometry of the situation tells us that

the point of the barrier for T i lies on OD' above D' toward
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the boundary of the detection region. As the point moves along OA

toward 0 beforo rotation we see that

(a) when it is above the point of tangency to the circle,

the resultant point (after rotation) is moving toward

this circle,

(b) when it is at the point of tangency, the resultant point

is on the circle of radius Rw2/wI ,

an (c) when it moves past the point of tangency for T < Tit

the resultant point moves away from the circle.

Again we note that this is because the construction rotates the point

abcut .x -R,v - 0.

Algebraically, we can see the above approach and recession by

considering (D44) from which we can obtain the square of the distance,

denoted by D(T), of a point on the barrier at T from x = R,y - 0

D(i) = (x(R)- 102 + y 2 (.t) = (d - w2 - R)2 + 2R(i - sin U)(d - Tw2).

Hence, for the minimum of l)(-), we must necessarily have 0,

which yields

T2 = (d - R sin U)/w 2. (D45)

d2D

This value of T does indeed yield a minimum since d2D = 2(w2 )
2 > 0.

Hence, we suggest that the barrier has a cusp at such a point,

if it occurs. Let us further note that such behavior can occur on any

optimal trajectory terminating on the boundary of the detection region

TI
for IA < u < 2. Thus, it appears that a trajectory terminating at a

point P on the boundary (if d is right) similarly approaches and

receeds from the circle to which OP is tangent. We have not had time
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to explore this further. Let us note that this doesn't occur for

U t. We note that for T to occur before t we must have

d - R sin JA < 2R w2(iO - U)/W

or

d < R{sin U + 2 w2 (fr - U)/w 1

which by (D26) is precisely the condition given by (D38).

Now that we are suspicious that if (D38) holds, the barrier

has a cusp in it if it doesn't terminate at T21 let us prove the

existence of the cusp algebraically before we plot the curve of the

barrier. Differentiating (D23), we obtain

dx W, 1l W, W~
-w2 sin ( -+ R R) {(d - w2 )cos(U+ - T)+ R sin R T . (D46)

Noting that

2 R )+ 1  R(-~UUwU i
wI  wI  wI

-w sin(I + T)+ wI sin(U + - r)cos U - w cos(- T + I)sin U
2 R R 1 R

= -w s(- T + U) sin I,

where we have used (D26), we see that (D46) is equal to

dx cos(U+ -) {sinlk-(d - T w)/R). (D47)
d '1 R 2



106

Simila rly

dv WI1
d Wi sin(U + -- )-{sin IA -(d -TW,)/R), (D48)

di I R

and hence

w 1 1

- -tan( + -0 (D49)
dx R (

Thus, we see that is continuous at -r = T (d - R sin U)/w2 .dx 2

but both d and - 0 at T = T and change sign as T passes
di dT 2

through T2" Hence, the barrier curve y = y(x) has a cusp at T 02"

Thus, the barrier must terminate (see Appendix B for discussion) and

(D38) and (D39) have been proved.

Another way to see this is to consider (D29) and (D30). From the

discussion of the involute in Appendix C, we see that the involute

winds in for

2 wI 1
d - RI-T (w/wl - (R-)( - ) 0.

2 1 w~

Therefore if

R

T w 2(T- U),

doesn't occur before the involute touches the circle with radius

R w2/wI, the involute starts to unwind. But for this to hold, (D38)

follows immediately. We note that the involute unwinds for
wo w1

{[d - R/-(ww I - (R 2-- T) < O.

Figure D2 shows the cusp which would occur if barrier didn't

terminate. The values of parameters which were used to calculate the

curve are shown on the figure.
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Continuation of Solution Past Transition Point

It may be shown that when barrier does not terminate (see (D38))

other extremals Intersect before T - TI and hence terminate, so we
tileconsider JustI(right) barrier. From (D17), we have

p It) sin U , P2 (T) -Cos U

From (D27) and (D28), we obtain

x(E 1 ) = (d - T1 w2 ) (-sin 14) + R(I - cos 2 4),

y(TI ) = (d - iIw 2 ) cos 14 - R sin 2 1 (50)

Later, we show that O(T) = -1 for T > T We assume this for now.

The adjoint equations for T > Ti are

dp 1
d- = P 2 W1 /R PI(r 1 ) sin. U

dp2 --
dp = PlWl/R P2(T) -cos U

The solution to the above equations is (for T > ,)

pl(T)= sin(U+-(T - TI)) --sin ',

p2 (T) - -cos(1 + R (T - = -os . (51)

The state equations for T > T are
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dx Wi W1

dt R y + w2 sin(U+ -(T - T)),

d R x + w - w2 cos(U + -([ - i)
dT R .

with initial conditions given by (D50). A rather laborious computation

(we omit the details) yields the solution to the above as (for T > T

wI

x(T) - -(d - Tw2)sin(U + ( - t 1 ))

+ 1~ o w 1t
+ R{2 COS --( - '- 1 - cos(2 U + - I

anQ

wI

Y(T) - (d - rw2cos(U + Wl T))

+ R{2 sin -T - T sin(2 U + -( ))}. (52)

We may write equations (D52) as (for T > T )

11

I- 1 i [(d-mW2 )(-sin U)+ 2R R Cos 2

(sin -(-T I  COS- - R sn 2-1 (D53)

or using (D50)

wI  w1
Xtx)iiR1 CO cos t)T -sin + W511 1 )COS(j - U)+ R}

FR 1 vR 1) {x(tl)+ Y~2 &~i~ -1c 2

y(T), sin -(T-T) COS A(T - 1  ( )-w (- )sin(! u) . (D54)

R I R 1 1 2 1



110

The most important aspects of the geometric interpretation of

(D54) are that rotation is in the positive (counter-clockwise) sense

about the point x - -R,y - 0 and the involute unwinds. That (D52)

does indeed trace out an involute may be seen by writing it in the

equivalent form

w 2  w 1

x(T) + R R w cos(, + -- (T - t
R 1/I

w wI w I  w

+ [ {3R I w2' d w2-)( Wl Wl(+~' i 1

y(1)
Y(T) [O/ W d) + (R -)(T -)]cos(U +I( - I)

1 R R 1

W 2  
w I

+ R -i sin( IA + -!(c - i (D55)
w R

w2

',Which is the involute to a circle of radius R - and with centerWi

x - -R,y - 0.

Shape of the Surveillance Region

When a surveillance region does exist, it may take on one of two

shapes depending on whether or not the barrier ter.tnates by intersect-

ing the negative y-axis. These two possibilities are shown in Figure

5 and 6 in the main text where further details are given. We develop

here the condition for the barrier to look like that shown in Figure 6.

d > R{Vl -(w 2/wl +(w2 /wl)( i- U)+ 1), (D56)

I
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which we may also write as

d k RWl -(w2/wl)z +(w2/w )sin- 1(-w2/w )+ ill(D7

where

i . in- (-w 2 /w 1 ) 1 3/2 Tr.

We consider Figure D3 (which isn't drawn to scale) and recall the

relationship between two normals to the involute of a circle given by

(C32)(see Appendix C). In Figure D3, we have

I' +  X 2 m 013 '(D58)

i.e., the difference In the length of the normals is equal to the distance

on the perimeter of the circle (evolute) between the points of tartgency.

'When the barrier intersects the negative y-axis we have

R g 9I" (D59)

We also have

93
T d -z or3 4

3- d - R sin 1, (D60)

and

X 2 = R w2/w I , (D61)

where

2(T - 1I) a a + B or a -- 21 -(T1r2 - 1A),

o/

a 3/2 TTI (D62)
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113

Combnining (D58), (D59), (D60), (D61), and (D62), yields

R + R(w 2 /wl)(3/2 -a - U) :. d - R siu U ,U(063)

which by use of (D26) is seen to be (D56). No.ing that

W £
1R (3/2n - 1),

w2 R

we see that

sin(1 r -cos U -- w/w

and hence

£2 '(Rw 2 /wl)sin- (-w2 /wl) 1

which leads to (D57).

Absence of Singular Solution

Unlike the problems r.onsidered in Appendices B and C, there does

not appear to be a singular solution to this problem.

Another Way to Determine UP

We have seen (see Appendix B) that the useable part of the terminal

surface may be determined from X ° n -- 0, where n is a unit normal

vector to the terminal surface and points into the state space. Another

criterion used by Isaacs ([30] p. 239) in a capture game is that the

UP is determined by d (r2) : 0, where x2 + y2 
= r2 . For the escape

problem at hand, this condition becomes
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(r r) > O, (D64)
r d

[we t,,t,' thi tht - ,' . i i ion i ,xAimint.d onIv on the terminal surface

an that opt iqal st rat c.i*,g arv not dCL.,rminod by the rate of change

ol raing, as on,- might h ner t ruin Dobbte [ 14] pp. 175-17b (see [30]

p 20 -21)t).]

Using, (1 and (.DI'0), w1) obtain I rom (D04)

w (x sin , - v cos ,- s V 0, (D65)"2

which becomes ior i = 0 and using (D20)

dw2(sin 2 u + cos2 u) ? s d cos u,

whence l t Ing sl = I

w 2 - Wi cos u -0, (D66)

which is the same result as from .\ n 0 O.

b. The New Geometrical Con!,itruction for Optimal Tra~ectories.

We consider optimal trajectories in the right half-plane for

0 i I S 2R/w (r - %) and -L _ u < T/2, cos U = w wI  Background

matori.Al is to he found In Appendix B. For 0 - :-r TI , we have that

(. = I, and by (D23) and (D24) we have

x(.) - n = (d d x2)cos.i u in {td- tw )inu- R}cos -- T,

and

y(-) ( - ) .'2 -zi u - lfl in R -i. (d - w )cos L coR I, (D67)

R 2 "
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which we may write as

for U u < i/2 where cos - w 2 /w1 and 0 g i s i

w

(XrT)- -R Cos Im sin (d - iw 2 )sin u - R
wI  w1

y(1) R -sin R I Cos R (d - -w2)cos u (D68)

Equation (D68) appears in the main text as (3). The geometric interpre-

tation of these equations follows equation (3) in the main text.

Considering the geometric interpretation of (D68), we see that

the involute winds in, i.e., radius of curvature decreases with

increasing i, for 0 • 1 :5: 1i" Further geometric investigations

have shown tnat mieighboring extremals intersect (see Figure 3). This

means that on an extremal there is a point conjugate to T = 0 and

that the trajectory terminates here (except for the barrier). Time has

not permitted this to be more fully investigated.

c. Ceometrv of the Solution.

This topic is discussed in section lId of the main te:t.



116

AP PENDIX 1.

OMiK ALLOCATION OF SEARCI EFFORT RESULTS

BY Til.. 1'ONTRYAGIN MAX [IUM PRINCIPLE

A major problem in Naval warfare i ; the search for targets at sea.

lhenc,, the optimum allocation of search effort is of interest in developing

tactics. We show in this appendix that some well-known results in the

optimum allocation of search effort may be more easily obtained by appli-

cation of the Pontryngin maximum principle [43] a:id the "sharpness" of

th, results extended slightly. We begin by reviewing briefly the litera-

ture.

Koopman wrote the first major work on search theory [35], which was

for a long time classified (until May ]1, 1?61). It still remains a

major work, especially remarkable for containing many of the concepts for

research being performed 20 years later. Som examples: formulation of non-

linear programming problem for searching ocean ark" s, Bayesian approach to

sequential search. Later, Professor Koopman pahilsuied so'-.r. of these results

in the cpen liLerature [36], [32, [38]. In J3t , K3o-pm', solv!& the iroblem

for a continuous, one-dimensional modol o1 cWe oL--.iwoo. 'tiLbnilui of se 4 rcl

density when the conditional probabilit%;' detcctby. the target is expoour..-

tial. However, it should be noted thaL Ch.i-. a of [35] cuntz.-.ins much

material not in [38]. For example, in [3; Koopman first solves a discrete

problem of searching effort, discusses the physical interpretation of various

quantities and the str-ctute of the solution, and tonn extends this to the

case where targets are continuously distributed (two-direasioal).

Charnes and Cooper (10] *xtended [38] by formulating a noon-linear

programming model for searching discrete alternatives. They solved this
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model by applying the Kuhn-Tucker conditions. De Guenin [13] extended

Koopman's results [38] by considering the optimum distribution of search

density for a general conditional probability of target detection (he

assumed this to be a concave function of search density).

We now derive the solution to Konpman's problem [38] and de Guenin's

[13] by the maximum principle. The reader is directed to these papers for

model formulation. Even though Koojmdni's problem is a special case of

de Guenin's, there still appears to be methodological value in considering

it first.

a. Koopman's Problem.

The problem studied by Koopman may be stated as to maximize target

detection probability when there is a restriction on the total amount of

search effort available. Mathematically, the problem may be stated as

maximize J p(x)[l - e- (x)] dx

subject to: J (x) dx = 0 [
and (x) >_ 0 , (El)

where

p(x)dx = Prob[target located between x and x + dx ]

1 - e'' - Probfdetect tazget with effort (x)j target located at x I

4(x) is search density and defines the distribution of search effort,

and $ is total search effort.
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We note that f~r (x) dx 1 and p(x) > 0

W( 10w cuns.(dcr LhyL following equivalent optimal control problem:

maximize p(x){il - e (X ) dx

4

subject to: dy/dx (x),

where 4(x) > 0

and y(x -- ) 0 and y(x=-4w)= (E2)

The Hamiltonian for this problem is

H(x,y,X,4) = p(x){l - e-4(x) + X4(x) , (E3)

where X is the dual variable corresponding to the state equation.

Defining J* as equal to max p(x){l - e }dx , we see that

X = J*/ y < 0

fx
since y(x) is cumulative effort (y(x) -(x) dx) and by expending

more effort than is optimal we can do nothing but reduce the optimum target

detection probability. By the condition

dx y 0

we spe that X(x) is a constant.

The optimum distribution of search effort is found by maximizing the

Hamiltonian with respect to the control variable , which is the search
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density. To facilitate a later argument, we let A -p where p > 0

Then, the Hamiltonian is maximized by

pa = p(x)e -  
- p 0 for 4(x) > 0

or

WH8 < 0 for (x) = 0

2 2 _ _ -4(X)
Since H/4 =-p(x)e < 0 for all x and 4(x) < , we see that

sufficient conditions for a global maximum are satisfied, i.e., H( ) is

concave. Thus, we see that the optimum distribution of search effort is

determined as follows:

(a) for p(x) < p, (x) = 0 , since then p(x)e - (X) < w or 3H/4 < 0 ,

(b) for p(x) > 1, 4(x) - kn(p(x)/w) , since p(x)e -@ 0  p yields

aH/a4 = 0 (E4)

We determine p as follows. Define 0 = {xjp(x) > } Then P is chosen

so that

£n(p(x)/p)dx = (x)dx = -

When the appropriate sufficient conditions (see [9] pp. 181-182) are ctarcked, 1
i.e. strengthened Weierstrass, strern hened Legendre, aud Jacobi, it is found

that (E4) is both necessary and sufficient.

b. De Guenin's Problem.

Here, we consider a more general conditional probability of target

detection. The problem is
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fUf_

maixiiiiizc f+- p(x)lh(4(x))dx ".1-

subje'ct to: 4'"(x)dx

and W()_ 0 ,(E5) !l_

where p(x) , C(x), and C are defined as before and

hi(,(x)) = Probdetect target with effort P(x)Itarget Js at x

De Guenin further assumes that h) is concave with h'( O) 0

i.e., h'(p) dh/dp is marginal return of conditional detection probability 5.

withi search effort. Diminishing returns may be stated as h"p() < 0 with

dh/dd 0) > 0 and dh.d( It is noted that the condition

h"( ) +0 for all implies that the inverse of h'(f), i.e. It' , is

well-deffined..

Again, we consider an equivalent optimal control problem:

maximize p(x)h((x)) dx ,

subject to: dy/dx = O(x)

where P (x) 0

and y(x -w) = 0 and y(x = +< ) = (E6)

The Hamiltonian for this problem is j
I(x,yX,p) - p(x)h~(x)) + (7(x) . (E7)

Ii



where, as before, the dual variable, X , will turn out to be negative

I
- a %/ 0

As before,

dX/dx = -TH/Sy = 0

so the dual variable is a constant, which we, for convenience, set equal to

-P where v -- 0 Maximization of the Hamiltonian with respect to the

control variable 4 is determined by

D11/4 = p(x)h'() - i- 0 for q(x) > 0

or

3H/4 < 0 for 0(x) --0

which is sufficient for a global maximum, since

2 H/ €2 = p(x)h"(-) < 0 for all x and 4(x)

We determine the desired search density, 4 , as followst

(a) for p(x)h'( - 0) < ,, (x) = 0 , since then 0 0

(b) for p(x)h'(4 = 0) > vp, 4(x) = h' l(ip(x)) , since h'(0) = p/p(x)

yields 1 0, (ES)

where v ic determined similarly to the previous case. It is easily shown

that (ES) are both necessary and sufficient for the optimum distribution

of search effort. Thus, we haxe shown that de Guenir's results are also

sufficient for the determination of optimum search effort.
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C I"Xt v II a i01lfl

ht W i , 1 mtir 0n sonic (,.xt ens ions oi either analysis or models to the

.1,v,. It can be showti thlkt the above results may be developed strictly

withiln the tramework ol the classical calculus of variations (and in a

dltterent way than reporteLd in the literature) but this analysis has not

been cOmpletely documented at this time. Besides the trivial extension to

h h(x,;(x)) , already noted by de Guenin, we may extend the maximum

principlt, approach to some cases where h( ) is not concave.

L
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